Previous |  Up |  Next

Article

Title: A strong relaxation theorem for maximal monotone differential inclusions with memory (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 4
Year: 1994
Pages: 227-235
Summary lang: English
.
Category: math
.
Summary: We consider maximal monotone differential inclusions with memory. We establish the existence of extremal strong and then we show that they are dense in the solution set of the original equation. As an application, we derive a “bang-bang” principle for nonlinear control systems monitored by maximal monotone differential equations. (English)
Keyword: maximal monotone operator
Keyword: differential inclusion
Keyword: continuous selector
Keyword: “bang-bang” principle
MSC: 34A60
MSC: 34H05
MSC: 34K35
MSC: 49J24
idZBL: Zbl 0817.34010
idMR: MR1322568
.
Date available: 2008-06-06T21:26:49Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107510
.
Reference: [1] Aubin, J.-P., Cellina, A.: Differential Inclusions.Springer, Berlin, 1984. MR 0755330
Reference: [2] Baras, P.: Compacité de l’ opérateur $f \rightarrow u$ solution d’une equation nonlineaire $(du/dt)+ Au \ni f^{\prime \prime }$.C.R. Acad. Sci. Paris 286 (1978), 1113 - 1116. MR 0493554
Reference: [3] Benamara, M.: Points Extremaux, Multi-applications et Fonctionelles Intégrales.Thèse du 3ème cycle, Université de Grenoble (1975), France.
Reference: [4] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-85. MR 0947921
Reference: [5] Brezis, H.: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055
Reference: [6] Dunford, N., Schwartz, J.: Linear Operators I.Willey, New York, 1958.
Reference: [7] Henry, C.: Differential equations with discontinuous right-hand side for planning procedures.J. Economic Theory 4 (1972), 545-551. MR 0449534
Reference: [8] Klein, E., Thompson, A.: Theory of Correspondences.Willey, New York, 1984. MR 0752692
Reference: [9] Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Diff. Equations 26 (1977), 347-374. MR 0508661
Reference: [10] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions.Inter. J. Math. and Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [11] Papageorgiou, N. S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [12] Papageorgiou, N. S.: Differential inclusions with state constraints.Proc. Edinburgh Math. Soc. 32 (1988), 81-97. MR 0981995
Reference: [13] Papageorgiou, N. S.: Maximal monotone differential inclusions with memory.Proc. Indian Acad. Sci. 102 (1992), 59-72. Zbl 0758.34012, MR 1163975
Reference: [14] Papageorgiou, N. S.: Convergence theorems for set-valued conditional expectations.Comm. Math. Univ. Carol. 34 (1) (1993), in press. Zbl 0788.60021, MR 1240208
Reference: [15] Tolstonogov, A: Extreme continuous selectors for multivalued maps and “bang-bang" principle for evolution inclusion.Soviet Math. Doklady 317 (1991), 481-485. MR 1121349
Reference: [16] Wagner, D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
.

Files

Files Size Format View
ArchMathRetro_030-1994-4_1.pdf 266.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo