Previous |  Up |  Next

Article

Title: On an oblique derivative problem involving an indefinite weight (English)
Author: Faierman, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 4
Year: 1994
Pages: 237-262
Summary lang: English
.
Category: math
.
Summary: In this paper we derive results concerning the angular distrubition of the eigenvalues and the completeness of the principal vectors in certain function spaces for an oblique derivative problem involving an indefinite weight function for a second order elliptic operator defined in a bounded region. (English)
Keyword: oblique derivative
Keyword: elliptic problem
Keyword: indefinite weight
Keyword: eigenvalues
Keyword: principal vectors
MSC: 35J25
MSC: 35P05
MSC: 35P10
idZBL: Zbl 0822.35102
idMR: MR1322569
.
Date available: 2008-06-06T21:26:55Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107511
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems.Comm. Pure Appl. Math. 15 (1962), 119-147. Zbl 0109.32701, MR 0147774
Reference: [3] Agmon, S.: Lectures on Elliptic Boundary Value Problems.Van Nostrand, Princeton, N.J. (1965). Zbl 0142.37401, MR 0178246
Reference: [4] Agmon, S., Douglis, A. and Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.Comm. Pure Appl. Math. 12 (1959), 623-727. MR 0125307
Reference: [5] Agranovitch, M. S., Vishik, M. I.: Elliptic problems with a parameter and parabolic problems of general type.Russian Math. Surveys 19 (1964), 53-157. MR 0192188
Reference: [6] Beals, R.: Indefinite Sturm–Liouville problems and half–range completeness.J. Differential Equations 56 (1985), 391-407. Zbl 0512.34017, MR 0780497
Reference: [7] Bers, L., Schechter, M.: Elliptic Equations.In: Partial Differential Equations, Lectures in Appl. Math.III, Interscience, New York, 1964, 131-299. MR 0165224
Reference: [8] Bognár, J.: Indefinite Inner Product Spaces.Springer, New York, 1974. MR 0467261
Reference: [9] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw–Hill, New York, 1955. MR 0069338
Reference: [10] Faierman, M.: On the eigenvalues of nonselfadjoint problems involving indefinite weights.Math. Ann. 282 (1988), 369-377. Zbl 0629.34024, MR 0967019
Reference: [11] Faierman, M.: Elliptic problems involving an indefinite weight.Trans. Amer. Math. Soc. 320 (1990), 253–279. Zbl 0721.35051, MR 0962280
Reference: [12] Faierman, M.: Non–selfadjoint elliptic problems involving an indefinite weight.Comm. Partial Differential Equations 15 (1990), 939–982. Zbl 0721.35051, MR 1070235
Reference: [13] Faierman, M.: An oblique derivative problem involving an indefinite weight.Dekker, New York, 1991, 147-154, In: Differential Equations, Lecture Notes in Pure and Appl. Math. 127. Zbl 0865.35096, MR 1096750
Reference: [14] Faierman, M.: An elliptic boundary value problem in a half–space.Boll. Un. Mat. Ital. 5-B (1991), 905-937. Zbl 0768.35021, MR 1146780
Reference: [15] Faierman, M.: Generalized parabolic cylinder functions.Asymptotic Anal. 5 (1992), 517-531. Zbl 0753.34041, MR 1169356
Reference: [16] Faierman, M.: A priori bounds for solutions of an elliptic equation.Proc. Roy. Soc. Edinburgh (to appear). Zbl 0791.35013, MR 1200196
Reference: [17] Fleckinger, J., Lapidus, M. L.: Eigenvalues of elliptic boundary value problems with an indefinite weight function.Trans. Amer. Math. Soc. 295 (1986), 305-324. MR 0831201
Reference: [18] Fleckinger, J., Lapidus, M. L.: Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights.Arch. Rational Mech. Anal. 98 (1987), 329-356. MR 0872751
Reference: [19] Hess, P.: On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions.Math. Ann. 270 (1985), 467-475. Zbl 0572.47006, MR 0774371
Reference: [20] Hess, P.: On the asymptotic distribution of eigenvalues of some non–selfadjoint problems.Bull. London Math. Soc. 18 (1986), 181-184. MR 0818823
Reference: [21] Hess, P.: On the spectrum of elliptic operators with respect to indefinite weights.Linear Algebra Appl. 84 (1986), 99-109. Zbl 0621.47026, MR 0872278
Reference: [22] Hörmander, L.: Uniqueness theorems for second order elliptic differential equations.Comm. Partial Differential Equations 8 (1983), 21-64. MR 0686819
Reference: [23] Kato, T.: Perturbation Theory for Linear Operators.2nd edn., Springer, New York, 1976. Zbl 0836.47009, MR 0407617
Reference: [24] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications.Vol. I, Springer, New York, 1972. MR 0350177
Reference: [25] Markus, A. S.: Introduction to the Spectral Theory of Polynomial Operator Pencils.Amer. Math. Soc., Providence, R.I. (1988). Zbl 0678.47005, MR 0971506
Reference: [26] Schechter, M.: General boundary value problems for elliptic partial differential equations.Comm. Pure Appl. Math. 12 (1959), 457-482. Zbl 0087.30204, MR 0125323
Reference: [27] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis.4th edn., University Press, Cambridge, 1965. MR 1424469
.

Files

Files Size Format View
ArchMathRetro_030-1994-4_2.pdf 376.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo