Previous |  Up |  Next

Article

Title: Oscillatory properties of solutions of second order nonlinear neutral differential inequalities with oscillating coefficients (English)
Author: Grammatikopoulos, M. K.
Author: Marušiak, P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 1
Year: 1995
Pages: 29-36
Summary lang: English
.
Category: math
.
Summary: This paper deals with the second order nonlinear neutral differential inequalities $(A_\nu )$: $(-1)^\nu x(t)\,\lbrace \,z^{\prime \prime }(t)+(-1)^\nu q(t)\,f(x(h(t))) \rbrace \le 0,\ $ $t\ge t_0\ge 0,$ where $\ \nu =0\ $ or $\ \nu =1,\ $ $\ z(t)\,=\,x(t)\,+\,p(t)\,x(t-\tau ),\ $ $\ 0<\tau =\ $ const, $\ p,q,h:[t_0,\infty )\rightarrow R\ $ $\ f:R\rightarrow R\ $ are continuous functions. There are proved sufficient conditions under which every bounded solution of $(A_\nu )$ is either oscillatory or $\ \liminf \limits _{t\rightarrow \infty }|x(t)|=0.$ (English)
Keyword: neutral differential equations
Keyword: oscillatory (nonoscillatory) solutions
MSC: 34A40
MSC: 34C10
MSC: 34K11
MSC: 34K15
MSC: 34K25
MSC: 34K40
idZBL: Zbl 0832.34066
idMR: MR1342372
.
Date available: 2008-06-06T21:27:42Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107521
.
Reference: [1] Bainov, D. D., Mishev, D. P.: Oscillation Theory for Neutral Equations with Delay.Adam Hilger IOP Pablisching Ltd. (1991) 288pp..
Reference: [2] Grammatikopoulos, M. K., Grove, E. A., Ladas, G.: Oscillation and asymptotic behavior of second order neutral differential equations with deviating arguments.Canad. Math. Soc. V8 (1967) 153$-$161. MR 0909906
Reference: [3] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: Asymptotic Properties of Solutions of Neutral Delay Differential Equations of the Second Order.Radovi Matematički $\ V_4\ $ (1988) 113 $-$149.
Reference: [4] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: On the Asymptitic Behavior of Solutions of Second Order Nonlinear Neutral Delay Differential Equations,.Journal Math. Anal. Appl. V156 $N_1$ (1991) 23$-$39. MR 1102594
Reference: [5] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: Asymptotic Behavior of Nonoscillatory Solutions of Neutral Delay Differential Equations of Arbitrary Order.Nonlinear Analysis, Theory, Math., Appl. V21, N1 (1993) 23$-$42. MR 1231526
Reference: [6] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations.Clear. Press., Oxford (1991) 368pp. MR 1168471
Reference: [7] Jaroš, J., Kussano, T.: Sufficient conditions for oscillations of higher order linear functional differential equations of neutral type.Japan J. Math.15 (1989) 415$-$432. MR 1039249
Reference: [8] Jaroš, J., Kusano, T.: Oscillation properties of first order nonlinear functional differential equations of neutral type.Diff. and Int. Equat. (1991) 425$-$436. MR 1081192
Reference: [9] Kusano, T., Onose, H.: Nonoscillation theorems for differential equation with deviating argument.Pacific J. Math. 63, $N_1$ (1976) 185$-$192. MR 0417536
.

Files

Files Size Format View
ArchMathRetro_031-1995-1_3.pdf 238.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo