Article
Keywords:
polynomial identity; nilpotent element; commutator ideal; associative ring; torsion free ring; center; commutativity
Summary:
Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
References:
                        
[1] Abujabal H. A. S.: 
On commutativity of left s-unital rings. Acta Sci. Math. (Szeged) 56 (1992), 51-62.  
MR 1204738 | 
Zbl 0806.16034[2] Abujabal H. A. S., Obaid M. A.: 
Some commutativity theorems for right s-unital rings. Math. Japonica, 37, No. 3 (1992), 591-600.  
MR 1162474 | 
Zbl 0767.16010[3] Ashraf M., Quadri M. A.: 
On commutativity of associative rings with constraints involving a subset. Rad. Mat.5 (1989), 141-149.  
MR 1012730 | 
Zbl 0683.16025[4] Ashraf M., Jacob V. W.: 
On certain polynomial identities implying commutativity for rings. (submitted).  
Zbl 0988.16518[5] Bell H. E.: 
On the power map and ring commutativity. Canad. Math. Bull. 21 (1978), 399-404.  
MR 0523579 | 
Zbl 0403.16024[6] Bell H. E.: 
Commutativity of rings with constraints on commutators. Resultate der Math. 8 (1985), 123-131.  
MR 0828934 | 
Zbl 0606.16023[7] Hermanci A.: 
Two elementary commutativity theorems for rings. Acta Math. Acad.Sci. Hungar. 29 (1977),23-29.  
MR 0444712[9] Kezlan T. P.: 
A note on commutativity of semi-prime PI- rings. Math. Japonica 27 (1982) 267-268.  
MR 0655230[10] Kezlan T. P.: 
A commutativity theorem involving certain polynomial constraints. Math. Japonica 36, No. 4 (1991),785-789.  
MR 1120461 | 
Zbl 0735.16021[11] Kezlan T. P.: 
On commutativity theorems for PI-rings with unity. Tamkang J. math. 24 No. 1 (1993), 29-36.  
MR 1215242[12] Komatsu H.: 
A commutativity theorem for rings. Math. J. Okayama Univ. 26 (1984), 135-139.  
MR 0779780 | 
Zbl 0568.16017[14] Nicholson W. K., Yaqub A.: 
A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419-423.  
MR 0563755 | 
Zbl 0605.16020[15] Psomopoulos E.: 
A commutativity theorem for rings involving a subset of the ring. Glasnik Mat. 18 (1983), 231-236.  
MR 0733162 | 
Zbl 0528.16017[16] Psomopoulos E.: 
Commutativity theorems for rings and groups with constraints on commutators. Internat. J. Math. & Math. Sci. 7 No. 3(1984), 513-517.   
MR 0771600 | 
Zbl 0561.16013