Previous |  Up |  Next

Article

Title: A commutativity theorem for associative rings (English)
Author: Ashraf, Mohammad
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 3
Year: 1995
Pages: 201-204
Summary lang: English
.
Category: math
.
Summary: Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$). (English)
Keyword: polynomial identity
Keyword: nilpotent element
Keyword: commutator ideal
Keyword: associative ring
Keyword: torsion free ring
Keyword: center
Keyword: commutativity
MSC: 16R50
MSC: 16U70
MSC: 16U80
idZBL: Zbl 0839.16030
idMR: MR1368258
.
Date available: 2008-06-06T21:28:55Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107540
.
Reference: [1] Abujabal H. A. S.: On commutativity of left s-unital rings.Acta Sci. Math. (Szeged) 56 (1992), 51-62. Zbl 0806.16034, MR 1204738
Reference: [2] Abujabal H. A. S., Obaid M. A.: Some commutativity theorems for right s-unital rings.Math. Japonica, 37, No. 3 (1992), 591-600. Zbl 0767.16010, MR 1162474
Reference: [3] Ashraf M., Quadri M. A.: On commutativity of associative rings with constraints involving a subset.Rad. Mat.5 (1989), 141-149. Zbl 0683.16025, MR 1012730
Reference: [4] Ashraf M., Jacob V. W.: On certain polynomial identities implying commutativity for rings.(submitted). Zbl 0988.16518
Reference: [5] Bell H. E.: On the power map and ring commutativity.Canad. Math. Bull. 21 (1978), 399-404. Zbl 0403.16024, MR 0523579
Reference: [6] Bell H. E.: Commutativity of rings with constraints on commutators.Resultate der Math. 8 (1985), 123-131. Zbl 0606.16023, MR 0828934
Reference: [7] Hermanci A.: Two elementary commutativity theorems for rings.Acta Math. Acad.Sci. Hungar. 29 (1977),23-29. MR 0444712
Reference: [8] Jacobson N.: Structure of rings.37 (Amer. Math. Soc. Colloq. Publ. Providence, 1956). Zbl 0073.02002, MR 0081264
Reference: [9] Kezlan T. P.: A note on commutativity of semi-prime PI- rings.Math. Japonica 27 (1982) 267-268. MR 0655230
Reference: [10] Kezlan T. P.: A commutativity theorem involving certain polynomial constraints.Math. Japonica 36, No. 4 (1991),785-789. Zbl 0735.16021, MR 1120461
Reference: [11] Kezlan T. P.: On commutativity theorems for PI-rings with unity.Tamkang J. math. 24 No. 1 (1993), 29-36. MR 1215242
Reference: [12] Komatsu H.: A commutativity theorem for rings.Math. J. Okayama Univ. 26 (1984), 135-139. Zbl 0568.16017, MR 0779780
Reference: [13] Komatsu H.: A commutativity theorem for rings-II.Osaka J. Math. 22 (1985), 811-814. Zbl 0575.16017, MR 0815449
Reference: [14] Nicholson W. K., Yaqub A.: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419-423. Zbl 0605.16020, MR 0563755
Reference: [15] Psomopoulos E.: A commutativity theorem for rings involving a subset of the ring.Glasnik Mat. 18 (1983), 231-236. Zbl 0528.16017, MR 0733162
Reference: [16] Psomopoulos E.: Commutativity theorems for rings and groups with constraints on commutators.Internat. J. Math. & Math. Sci. 7 No. 3(1984), 513-517. Zbl 0561.16013, MR 0771600
.

Files

Files Size Format View
ArchMathRetro_031-1995-3_4.pdf 200.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo