[1] Bailey, T. N.; Eastwood, M. G.: 
Complex paraconformal manifolds: their differential geometry and twistor theory. Forum Math. 3 (1991), 61–103. 
MR 1085595[2] Bailey, T. N.; Eastwood, M. G.; Gover, A. R.: 
Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24 (1994), 1191–1217. 
MR 1322223[3] Baston, R. J.: 
Verma modules and differential conformal invariants. J. Differential Geometry 32 (1990), 851–898. 
MR 1078164 | 
Zbl 0732.53011[4] Baston, R. J.; Eastwood, M. G.: 
The Penrose Transform: Its Interaction with Representation Theory. Oxford University Press, 1989. 
MR 1038279[5] Čap, A.: A note on endomorphisms of modules over reductive Lie groups and algebras. Proceedings of the Conference Differential Geometry and Applications, Brno, 1995, pp. 127–131, electronically available at www.emis.de.
[CSS1] Čap, A.; Slovák, J.; Souček, V.: 
Invariant operators on manifolds with almost hermitian symmetric structures, I. invariant differentiation. Preprint ESI 186 (1994), electronically available at www.esi.ac.at. 
MR 1474550[CSS2] Čap, A.; Slovák, J.; Souček, V.: 
Invariant operators on manifolds with almost hermitian symmetric structures, II. normal Cartan connections. Preprint ESI 194 (1995), electronically available at www.esi.ac.at. 
MR 1620484[8] Eastwood, M. G.: 
Notes on conformal differential geometry. to appear in Rendiconti Circ. Mat. Palermo, Proceedings of the 15th Winter School on Geometry an Physics, Srní, 1995. 
MR 1463509 | 
Zbl 0911.53020[9] Eastwood, M. G.; Rice, J. W.: 
Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109 (1987), 207–228. 
MR 0880414[10] Eastwood, M. G.; Slovák, J.: 
Semiholonomic Verma modules. Preprint ESI 376 (1996), electronically available at www.esi.ac.at. 
MR 1483772[11] Ehresmann, C.: 
Extension du calcul des jets aux jets non holonomes. C. R. Acad. Sci. Paris 239 (1954), 1762–1764. 
MR 0066734 | 
Zbl 0057.15603[12] Ochiai, T.: 
Geometry associated with semisimple flat homogeneous spaces. Trans. Amer. Math. Soc. 152 (1970), 159–193. 
MR 0284936 | 
Zbl 0205.26004