Previous |  Up |  Next

Article

Title: Commutativity of associative rings through a Streb's classification (English)
Author: Ashraf, Mohammad
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 3
Year: 1997
Pages: 315-321
Summary lang: English
.
Category: math
.
Summary: Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$ there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties. (English)
Keyword: factorsubring
Keyword: s-unital ring
Keyword: commutativity
Keyword: commutator
Keyword: associative ring
MSC: 16U70
MSC: 16U80
idZBL: Zbl 0913.16017
idMR: MR1601337
.
Date available: 2008-06-06T21:34:22Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107620
.
Reference: [1] Abujabal H. A. S., Ashraf M.: Some commutativity theorems through a Streb’s classification.Note Mat. 14, No.1 (1994) (to appear). Zbl 0879.16019, MR 1442008
Reference: [2] Ashraf M.: On commutativity of one sided s-unital rings with some polynomial constraints.Indian J. Pure and Appl. Math. 25 (1994), 963-967. Zbl 0814.16030, MR 1294065
Reference: [3] Bell H. E., Quadri M. A., Khan M. A.: Two commutativity theorems for rings.Rad. Mat. 3 (1994), 255-260. MR 0931981
Reference: [4] Bell H. E., Quadri M. A., Ashraf M.: Commutativity of rings with some commutator constraints.Rad. Mat. 5 (1989), 223-230. Zbl 0697.16031, MR 1050891
Reference: [5] Chacron M.: A commutativity theorem for rings.Proc. Amer. Math. Soc., 59 (1976), 211-216. Zbl 0341.16020, MR 0414636
Reference: [6] Herstein I. N.: Two remakrs on commutativity of rings.Canad. J. Math. 7 (1955), 411-412. MR 0071405
Reference: [7] Hirano Y., Kobayashi Y., Tominaga H.: Some polynomial identities and commutativity of s-unital rings.Math. J. Okayama Univ. 24 (1982), 7-13. Zbl 0487.16023, MR 0660049
Reference: [8] Jacobson N.: Structure theory of algebraic algebras of bounded degree.Ann. Math. 46 (1945), 695-707. MR 0014083
Reference: [9] Komatsu H., Tominaga H.: Chacron’s conditions and commutativity theorems.Math. J. Okayama Univ. 31 (1989), 101-120. MR 1043353
Reference: [10] Komatsu H., Tominaga H.: Some commutativity theorems for left s-unital rings.Resultate Math. 15 (1989), 335-342. Zbl 0678.16027, MR 0997069
Reference: [11] Komatsu H., Tominaga H.: Some commutativity conditions for rings with unity.Resultate Math. 19 (1991), 83-88. Zbl 0776.16017, MR 1091958
Reference: [12] Komatsu H., Nishinaka T., Tominaga H.: On commutativity of rings.Rad. Math. 6 (1990), 303-311. Zbl 0718.16031, MR 1096712
Reference: [13] Putcha M. S., Yaqub A.: Rings satisfying polynomial constraints.J. Math. Soc., Japan 25 (1973), 115-124. Zbl 0242.16017, MR 0313312
Reference: [14] Quadri M. A., Ashraf M., Khan M. A.: A commutativity condition for semiprime ring-II.Bull. Austral. Math. Soc. 33 (1986), 71-73. MR 0823854
Reference: [15] Quadri M. A., Ashraf M.: Commutativity of generalized Boolean rings.Publ. Math. (Debrecen) 35 (1988), 73-75. Zbl 0657.16020, MR 0971954
Reference: [16] Quadri M. A., Khan M. A., Asma Ali: A commutativity theorem for rings with unity.Soochow J. Math. 15 (1989), 217-227. MR 1045165
Reference: [17] Searcoid M. O., MacHale D.: Two elementary generalizations for Boolean rings.Amer. Math. Monthly 93 (1986), 121-122. MR 0827587
Reference: [18] Streb W.: Zur struktur nichtkommutativer Ringe.Math. J. Okayama Univ. 31 (1989), 135-140. Zbl 0702.16022, MR 1043356
Reference: [19] Tominaga H., Yaqub A.: Commutativity theorems for rings with constraints involving a commutative subset.Resultate Math. 11 (1987), 186-192. MR 0880201
.

Files

Files Size Format View
ArchMathRetro_033-1997-3_6.pdf 225.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo