Previous |  Up |  Next

Article

Title: The boundary-value problems for Laplace equation and domains with nonsmooth boundary (English)
Author: Medková, Dagmar
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 1
Year: 1998
Pages: 173-181
Summary lang: English
.
Category: math
.
Summary: Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed. (English)
Keyword: Laplace equation
Keyword: Dirichlet problem
Keyword: Neumann problem
Keyword: Robin problem
MSC: 31B05
MSC: 31B10
MSC: 35J05
MSC: 35J25
idZBL: Zbl 0910.35038
idMR: MR1629696
.
Date available: 2009-02-17T10:10:59Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107642
.
Reference: [1] R. S. Angell R. E. Kleinman J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat., 113 (1988), 387–402. MR 0981880
Reference: [2] Yu. D. Burago V. G. Maz’ ya: Potential theory and function theory for irregular regions.Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad, 1969. MR 0240284
Reference: [3] N. V. Grachev V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ., 19 (4), 1986, 60–64. MR 0880678
Reference: [4] N. V. Grachev V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-06, Linköping Univ., Sweden.
Reference: [5] N. V. Grachev V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
Reference: [6] N. V. Grachev V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
Reference: [7] M. Chlebík: Tricomi Potentials.Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1988 (in Slovak).
Reference: [8] J. Král: On double-layer potential in multidimensional space.Dokl. Akad. Nauk SSSR, 159 (1964). MR 0176210
Reference: [9] J. Král: Integral Operators in Potential Theory.Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. MR 0590244
Reference: [10] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc., 125 (1966), 511–547. MR 0209503
Reference: [11] J. Král I. Netuka: Contractivity of C. Neumann’s operator in potential theory.Journal of the Mathematical Analysis and its Applications, 61 (1977), 607–619. MR 0508010
Reference: [12] J. Král W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential heory.Aplikace matematiky, 31 (1986), 239–308. MR 0854323
Reference: [13] R. Kress G. F. Roach: On the convergence of successive approximations for an integral equation in a Green’s function approach to the Dirichlet problem.Journal of mathematical analysis and applications, 55 (1976), 102–111. MR 0411214
Reference: [14] V. Maz’ya A. Solov’ev: On the boundary integral equation of the Neumann problem in a domain with a peak.Amer. Math. Soc. Transl., 155 (1993), 101–127.
Reference: [15] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czech. Math. J., 47 (1997), 651–679. MR 1479311
Reference: [16] D. Medková : Solution of the Neumann problem for the Laplace equation.Czech. Math. J. (in print).
Reference: [17] D. Medková: Solution of the Robin problem for the Laplace equation.preprint No.120, Academy of Sciences of the Czech republic, 1997. MR 1609158
Reference: [18] I. Netuka: Smooth surfaces with infinite cyclic variation.Čas. pěst. mat., 96 (1971). Zbl 0204.08002, MR 0284553
Reference: [19] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae, 12 (1971), 205–211. Zbl 0215.42602, MR 0287021
Reference: [20] I. Netuka: Generalized Robin problem in potential theory.Czech. Math. J., 22 (97) (1972), 312–324. Zbl 0241.31008, MR 0294673
Reference: [21] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czech Math. J., 22 (97) (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [22] I. Netuka: The third boundary value problem in potential theory.Czech. Math. J., 2 (97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [23] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat., 100 (1975), 374–383. Zbl 0314.31006, MR 0419794
Reference: [24] C. Neumann: Untersuchungen über das logarithmische und Newtonsche Potential.Teubner Verlag, Leipzig, 1877.
Reference: [25] C. Neumann: Zur Theorie des logarithmischen und des Newtonschen Potentials.Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 22, 1870, 49–56, 264–321.
Reference: [26] C. Neumann: Über die Methode des arithmetischen Mittels.Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).
Reference: [27] J. Radon: Über Randwertaufgaben beim logarithmischen Potential.Sitzber. Akad. Wiss. Wien, 128, 1919, 1123–1167.
Reference: [28] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method.Applicable Analysis, 45, (1992), 1–4, 135–177. MR 1293594
Reference: [29] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum.Applicable Analysis, 56 (1995), 109–115. MR 1378015
.

Files

Files Size Format View
ArchMathRetro_034-1998-1_16.pdf 212.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo