Title:
|
Existence of solutions for nonlinear parabolic problems (English) |
Author:
|
Halidias, Nikolaos |
Author:
|
Papageorgiou, Nikolaos S. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
35 |
Issue:
|
3 |
Year:
|
1999 |
Pages:
|
255-274 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider nonlinear parabolic boundary value problems. First we assume that the right hand side term is discontinuous and nonmonotone and in order to have an existence theory we pass to a multivalued version by filling in the gaps at the discontinuity points. Assuming the existence of an upper solution $\phi $ and of a lower solution $\psi $ such that $\psi \le \phi $, and using the theory of nonlinear operators of monotone type, we show that there exists a solution $x \in [\psi ,\phi ]$ and that the set of all such solutions is compact in $W_{pq}(T)$. For the problem with a Caratheodory right hand side we show the existence of extremal solutions in $[\psi ,\phi ]$. (English) |
Keyword:
|
upper and lower solutions |
Keyword:
|
weak solution |
Keyword:
|
evolution triple |
Keyword:
|
compact embedding |
Keyword:
|
distributional derivative |
Keyword:
|
operator of type $(S)_{+}$ |
Keyword:
|
operator of type $L-(S)_{+}$ |
Keyword:
|
$L$-pseudomonotone operator |
Keyword:
|
multivalued problem |
Keyword:
|
extremal solutions |
Keyword:
|
Zorn’s lemma |
MSC:
|
35K55 |
MSC:
|
35K60 |
idZBL:
|
Zbl 1046.35054 |
idMR:
|
MR1725842 |
. |
Date available:
|
2008-06-06T22:23:23Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107700 |
. |
Reference:
|
[1] Aizicovici S., Papageorgiou N. S.: Infinite dimensional parametric optimal control problems.Math. Nachr. 162 (1993), 17–38. Zbl 0807.49001, MR 1239573 |
Reference:
|
[2] Boccardo L., Murat F., Puel J.-P.: Existence results for some quasilinear parabolic problems.Nonlin. Anal-TMA 13 (1989), 373–392. MR 0987375 |
Reference:
|
[3] Carl S.: On the existence of extremal weak solutions for a class of quasilinear parabolic problems.Diff. Integ. Eqns 6 (1993), 1493–1505. Zbl 0805.35057, MR 1235207 |
Reference:
|
[4] Carl S.: Enclosure of solution for quasilinear dynamic hemivariational inequalities.Nonlin. World 3 (1996), 281–298. MR 1411356 |
Reference:
|
[5] Chang K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations.J. Math. Anal. 80 (1981), 102–129. MR 0614246 |
Reference:
|
[6] Chipot M., Rodrigues, J-E.: Comparison and stability of solutions to a class of quasilinear parabolic problems.Proc. Royal Soc. Edinburgh 110 A (1988), 275–285. Zbl 0669.35052, MR 0974743 |
Reference:
|
[7] Costa D. G., Goncalves J. V. A.: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. 153 ( 1990), 470–485. Zbl 0717.49007, MR 1080660 |
Reference:
|
[8] Dancer E. N., Sweers G.: On the existence of maximal weak solution for a semilinear elliptic equation.Diff. Integr. Eqns 2 (1989), 533–540. MR 0996759 |
Reference:
|
[9] Deuel J., Hess P.: Nonlinear parabolic boundary value problems with upper and lower solutions.Israel J. Math. 29 (1978), 92–104. Zbl 0372.35045, MR 0492636 |
Reference:
|
[10] Dunford N., Schwartz J.: Linear Operators I.Wiley, New York (1958). |
Reference:
|
[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775 |
Reference:
|
[12] Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions.CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660 |
Reference:
|
[13] Halidias N., Papageorgiou N. S.: Second order multivalued boundary value problems.Archivum Math. (Brno) 34 (1998), 267–284. Zbl 0915.34021, MR 1645320 |
Reference:
|
[14] Kandilakis D., Papageorgiou N. S.: Nonlinear periodic parabolic problems with nonmonotone discontinuities.Proc. Edinburgh Math. Soc. 41 (1998), 117–132. Zbl 0909.35074, MR 1604345 |
Reference:
|
[15] Kesavan S.: Topics in Functional Analysis and Applications.Wiley, New York (1989). Zbl 0666.46001, MR 0990018 |
Reference:
|
[16] Lions J.-L.: Quelques Methodes de Resolution des Problems aux Limits Non-Lineaires.Dunod, Paris (1969). MR 0259693 |
Reference:
|
[17] Miettinen M.: Approximation of hemivariational inequalities and optimal control problem.Univ. of Jyvaskyla, Math. Department, Finland, Report 59 (1993). MR 1248824 |
Reference:
|
[18] Miettinen M.: A parabolic hemivariational inequality.Nonl. Anal-TMA 26 (1996), 725–734. Zbl 0858.35072, MR 1362746 |
Reference:
|
[19] Mokrane A.: Existence of bounded solutions for some nonlinear parabolic equations.Proc. Royal Soc. Edinburgh 107 (1987), 313–326. MR 0924524 |
Reference:
|
[20] Panagiotopoulos P. D.: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer Verlag, New York, Berlin (1994). MR 1385670 |
Reference:
|
[21] Rauch J.: Discontinuous semilinear differential equations and multiple-valued maps.Proc. AMS 64 (1977), 272–282. Zbl 0413.35031, MR 0442453 |
Reference:
|
[22] Stuart C.: Maximal and minimal solutions of elliptic equations with discontinuous nonlinearities.Math. Zeitschrift 163 (1978), 239–249. MR 0513729 |
Reference:
|
[23] Zeidler E.: Nonlinear Functional Analysis and its Applications.Springer Verlag, New York (1990). Zbl 0684.47029 |
. |