Title:
|
On asymptotic decaying solutions for a class of second order differential equations (English) |
Author:
|
Matucci, Serena |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
35 |
Issue:
|
3 |
Year:
|
1999 |
Pages:
|
275-284 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The author considers the quasilinear differential equations \begin{gather} \left(r(t)\varphi (x^{\prime })\right)^{\prime }+ q(t)f(x)=0\,,\quad \quad t\ge a\\ \multicolumn{2}{l}{\text{and}}\\ \left(r(t)\varphi (x^{\prime })\right)^{\prime } + F(t,x)=\pm g(t)\,,\quad \quad t\ge a\,. \end{gather} By means of topological tools there are established conditions ensuring the existence of nonnegative asymptotic decaying solutions of these equations. (English) |
Keyword:
|
nonoscillatory behavior |
Keyword:
|
asymptotic decaying nonnegative solutions |
Keyword:
|
fixed point theorem |
MSC:
|
34C11 |
MSC:
|
34D05 |
idZBL:
|
Zbl 1048.34088 |
idMR:
|
MR1725843 |
. |
Date available:
|
2008-06-06T22:23:26Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107701 |
. |
Reference:
|
[1] Atkinson F. V.: On second-order non-linear oscillations.Pacific J. Math. 5 (1955), 643–647. Zbl 0065.32001, MR 0072316 |
Reference:
|
[2] Cecchi M., Furi M., Marini M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal. TMA 9 (1985), 171–180. Zbl 0563.34018, MR 0777986 |
Reference:
|
[3] Cecchi M., Marini M., Villari G.: On some classes of continuable solutions of a nonlinear differential equation.J. Diff. Eq. 118 (1995), 403–419. Zbl 0827.34020, MR 1330834 |
Reference:
|
[4] Cecchi M., Marini M., Villari G.: Topological and variational approaches for nonlinear oscillation: an extension of a Bhatia result.In Proc. First World Congress Nonlinear Analysis, Walter de Gruyter, Berlin, 1996, 1505–1514. Zbl 0846.34027, MR 1389184 |
Reference:
|
[5] Cecchi M., Marini M., Villari G.: Oscillation criteria for second order differential equations.(to appear on NODEA), 1999. |
Reference:
|
[6] Del Pino M., Elgueta M., Manasevich R.: Generalizing Hartmann’s oscillation result for $(\vert x^{\prime }\vert ^{p-2} x^{\prime })^{\prime } + c(t) \vert x\vert ^{p-2} x =0, \, p>1$.Houston J. Math. 17 (1991), 63–70. MR 1107187 |
Reference:
|
[7] Elbert Á.: A half-linear second order differential equation.In: Qualitative Theory of Differential Equations, volume 30 of Colloquia Math. Soc. Janos Bolyai, Szeged, 1979, 153–180. MR 0680591 |
Reference:
|
[8] Elbert Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations.In: Ordinary and partial differential equations, volume 964 of Lect. Notes Math., Proc. 7th Conf., Dundee, Scotl., 1982, 187–212. Zbl 0528.34034, MR 0693113 |
Reference:
|
[9] Elbert Á., Kusano T.: Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations.Acta Math. Hung. 56 (1990), 325–336. MR 1111319 |
Reference:
|
[10] Hartman P.: Ordinary Differential Equations.Birkhäuser, Boston, 2nd edition, 1982. Zbl 0476.34002, MR 0658490 |
Reference:
|
[11] Heidel J. W.: A nonoscillation theorem for a nonlinear second order differential equation.Proc. Amer. Math. Soc. 22 (1969), 485–488. Zbl 0169.42203, MR 0248396 |
Reference:
|
[12] Kiguradze I. T., Chanturia T. A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer Academic Publishers, Dordrecht-Boston-London, 1992. |
Reference:
|
[13] Kusano T., Naito Y.: Oscillation and nonoscillation criteria for second order quasilinear differential equations.Acta Math. Hungar. 76 (1997), 81–99. Zbl 0906.34024, MR 1459772 |
Reference:
|
[14] Kusano T., Naito Y., Ogata Q.: Strong oscillation and nonoscillation of quasilinear differential equations of second order.J. Diff. Eq. and Dyn. Syst. 2 (1994), 1–10. Zbl 0869.34031, MR 1386034 |
Reference:
|
[15] Kusano T., Yoshida N.: Nonoscillation theorems for a class of quasilinear differential equations of second order.J. Math. Anal. Appl. 189 (1995), 115–127. Zbl 0823.34039, MR 1312033 |
Reference:
|
[16] Lomtatidze A.: Oscillation and nonoscillation of Emden-Fowler type equation of second order.Arch. Math. Brno 32 (1996), 181–193. MR 1421855 |
Reference:
|
[17] Mirzov J. D.: On the oscillation of a system of nonlinear differential equations.Differentsial’nye Uravneniya 9 (1973), 581–583, (in Russian). MR 0315209 |
Reference:
|
[18] Mirzov J. D.: On the question of oscillation of solutions of a system of nonlinear differential equations.Mat. Zametki 16 (1974), 571–576, (in Russian). MR 0374562 |
Reference:
|
[19] Mirzov J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184 |
Reference:
|
[20] Mirzov J. D.: On the oscillation of solutions of a system of differential equations.Math. Zametki 23 (1978), 401–404, (in Russian). MR 0492540 |
Reference:
|
[21] Mirzov J. D.: Asymptotic properties of the solutions of the system of nonlinear nonautonomous differential equations.Adygeja, Maikop, 1993. |
Reference:
|
[22] Nehari Z.: Oscillation criteria for second-order linear differential equations.Trans. Amer. Math. Soc. 85 (1957), 428–445. Zbl 0078.07602, MR 0087816 |
Reference:
|
[23] Njoku F. I.: A note on the existence of infinitely many radially symmetric solutions of a quasilinear elliptic problem.Dyn. Cont. Discrete Impulsive Syst. 4 (1998), 227–239. Zbl 0901.35033, MR 1621822 |
Reference:
|
[24] Njoku F. I., Omari P., and Zanolin F.: Multiplicity of positive radial solutions of a quasilinear elliptic problem in a ball.(to appear), 1998. MR 1785685 |
Reference:
|
[25] Wang J.: On second order quasilinear oscillations.Funkcial. Ekvac. 41 (1998), 25–54. Zbl 1140.34356, MR 1627369 |
Reference:
|
[26] Wong J. S. W.: On second order nonlinear oscillation.Funkcial. Ekvac. 11 (1968), 207–234. Zbl 0157.14802, MR 0245915 |
Reference:
|
[27] Wong J. S. W.: On the generalized Emden-Fowler equation.SIAM Rev. 17 (1975), 339–360. Zbl 0295.34026, MR 0367368 |
. |