Previous |  Up |  Next

Article

Title: On asymptotic decaying solutions for a class of second order differential equations (English)
Author: Matucci, Serena
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 3
Year: 1999
Pages: 275-284
Summary lang: English
.
Category: math
.
Summary: The author considers the quasilinear differential equations \begin{gather} \left(r(t)\varphi (x^{\prime })\right)^{\prime }+ q(t)f(x)=0\,,\quad \quad t\ge a\\ \multicolumn{2}{l}{\text{and}}\\ \left(r(t)\varphi (x^{\prime })\right)^{\prime } + F(t,x)=\pm g(t)\,,\quad \quad t\ge a\,. \end{gather} By means of topological tools there are established conditions ensuring the existence of nonnegative asymptotic decaying solutions of these equations. (English)
Keyword: nonoscillatory behavior
Keyword: asymptotic decaying nonnegative solutions
Keyword: fixed point theorem
MSC: 34C11
MSC: 34D05
idZBL: Zbl 1048.34088
idMR: MR1725843
.
Date available: 2008-06-06T22:23:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107701
.
Reference: [1] Atkinson F. V.: On second-order non-linear oscillations.Pacific J. Math. 5 (1955), 643–647. Zbl 0065.32001, MR 0072316
Reference: [2] Cecchi M., Furi M., Marini M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal. TMA 9 (1985), 171–180. Zbl 0563.34018, MR 0777986
Reference: [3] Cecchi M., Marini M., Villari G.: On some classes of continuable solutions of a nonlinear differential equation.J. Diff. Eq. 118 (1995), 403–419. Zbl 0827.34020, MR 1330834
Reference: [4] Cecchi M., Marini M., Villari G.: Topological and variational approaches for nonlinear oscillation: an extension of a Bhatia result.In Proc. First World Congress Nonlinear Analysis, Walter de Gruyter, Berlin, 1996, 1505–1514. Zbl 0846.34027, MR 1389184
Reference: [5] Cecchi M., Marini M., Villari G.: Oscillation criteria for second order differential equations.(to appear on NODEA), 1999.
Reference: [6] Del Pino M., Elgueta M., Manasevich R.: Generalizing Hartmann’s oscillation result for $(\vert x^{\prime }\vert ^{p-2} x^{\prime })^{\prime } + c(t) \vert x\vert ^{p-2} x =0, \, p>1$.Houston J. Math. 17 (1991), 63–70. MR 1107187
Reference: [7] Elbert Á.: A half-linear second order differential equation.In: Qualitative Theory of Differential Equations, volume 30 of Colloquia Math. Soc. Janos Bolyai, Szeged, 1979, 153–180. MR 0680591
Reference: [8] Elbert Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations.In: Ordinary and partial differential equations, volume 964 of Lect. Notes Math., Proc. 7th Conf., Dundee, Scotl., 1982, 187–212. Zbl 0528.34034, MR 0693113
Reference: [9] Elbert Á., Kusano T.: Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations.Acta Math. Hung. 56 (1990), 325–336. MR 1111319
Reference: [10] Hartman P.: Ordinary Differential Equations.Birkhäuser, Boston, 2nd edition, 1982. Zbl 0476.34002, MR 0658490
Reference: [11] Heidel J. W.: A nonoscillation theorem for a nonlinear second order differential equation.Proc. Amer. Math. Soc. 22 (1969), 485–488. Zbl 0169.42203, MR 0248396
Reference: [12] Kiguradze I. T., Chanturia T. A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer Academic Publishers, Dordrecht-Boston-London, 1992.
Reference: [13] Kusano T., Naito Y.: Oscillation and nonoscillation criteria for second order quasilinear differential equations.Acta Math. Hungar. 76 (1997), 81–99. Zbl 0906.34024, MR 1459772
Reference: [14] Kusano T., Naito Y., Ogata Q.: Strong oscillation and nonoscillation of quasilinear differential equations of second order.J. Diff. Eq. and Dyn. Syst. 2 (1994), 1–10. Zbl 0869.34031, MR 1386034
Reference: [15] Kusano T., Yoshida N.: Nonoscillation theorems for a class of quasilinear differential equations of second order.J. Math. Anal. Appl. 189 (1995), 115–127. Zbl 0823.34039, MR 1312033
Reference: [16] Lomtatidze A.: Oscillation and nonoscillation of Emden-Fowler type equation of second order.Arch. Math. Brno 32 (1996), 181–193. MR 1421855
Reference: [17] Mirzov J. D.: On the oscillation of a system of nonlinear differential equations.Differentsial’nye Uravneniya 9 (1973), 581–583, (in Russian). MR 0315209
Reference: [18] Mirzov J. D.: On the question of oscillation of solutions of a system of nonlinear differential equations.Mat. Zametki 16 (1974), 571–576, (in Russian). MR 0374562
Reference: [19] Mirzov J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184
Reference: [20] Mirzov J. D.: On the oscillation of solutions of a system of differential equations.Math. Zametki 23 (1978), 401–404, (in Russian). MR 0492540
Reference: [21] Mirzov J. D.: Asymptotic properties of the solutions of the system of nonlinear nonautonomous differential equations.Adygeja, Maikop, 1993.
Reference: [22] Nehari Z.: Oscillation criteria for second-order linear differential equations.Trans. Amer. Math. Soc. 85 (1957), 428–445. Zbl 0078.07602, MR 0087816
Reference: [23] Njoku F. I.: A note on the existence of infinitely many radially symmetric solutions of a quasilinear elliptic problem.Dyn. Cont. Discrete Impulsive Syst. 4 (1998), 227–239. Zbl 0901.35033, MR 1621822
Reference: [24] Njoku F. I., Omari P., and Zanolin F.: Multiplicity of positive radial solutions of a quasilinear elliptic problem in a ball.(to appear), 1998. MR 1785685
Reference: [25] Wang J.: On second order quasilinear oscillations.Funkcial. Ekvac. 41 (1998), 25–54. Zbl 1140.34356, MR 1627369
Reference: [26] Wong J. S. W.: On second order nonlinear oscillation.Funkcial. Ekvac. 11 (1968), 207–234. Zbl 0157.14802, MR 0245915
Reference: [27] Wong J. S. W.: On the generalized Emden-Fowler equation.SIAM Rev. 17 (1975), 339–360. Zbl 0295.34026, MR 0367368
.

Files

Files Size Format View
ArchMathRetro_035-1999-3_7.pdf 342.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo