Previous |  Up |  Next

Article

Title: Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles (English)
Author: Dalík, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 4
Year: 1999
Pages: 285-297
Summary lang: English
.
Category: math
.
Summary: An explicit description of the basic Lagrange polynomials in two variables related to a six-tuple $a^1,\dots ,a^6$ of nodes is presented. Stability of the related Lagrange interpolation is proved under the following assumption: $a^1,\dots ,a^6$ are the vertices of triangles $T_1,\dots ,T_4$ without obtuse inner angles such that $T_1$ has one side common with $T_j$ for $j=2,3,4$. (English)
Keyword: quadratic Lagrange interpolation in 2D
Keyword: stability
MSC: 41A05
MSC: 41A10
MSC: 41A63
MSC: 65D05
idZBL: Zbl 1051.41002
idMR: MR1744516
.
Date available: 2008-06-06T22:23:55Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107703
.
Reference: [1] Dalík, J.: Quadratic interpolation polynomials in vertices of strongly regular triangulations.in Finite Element Methods, superconvergence, post-processing and a posteriori estimates, Ed. Křižek, Neittaanmäki, Stenberg, Marcel Dekker (1996), 85–95. MR 1602833
Reference: [2] Sauer, T., Xu, Y.: On multivariate Lagrange interpolation.Math. of Comp. 64 (1995), 1147–1170. MR 1297477
.

Files

Files Size Format View
ArchMathRetro_035-1999-4_1.pdf 405.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo