Previous |  Up |  Next

Article

Title: Leudesdorf's theorem and Bernoulli numbers (English)
Author: Slavutskii, I. Sh.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 4
Year: 1999
Pages: 299-303
Summary lang: English
.
Category: math
.
Summary: For $m\in $, $(m,6)=1$, it is proved the relations between the sums \[ W(m,s)=\sum _{i=1, (i,m)=1}^{m-1} i^{-s}\,, \quad \quad s\in \,, \] and Bernoulli numbers. The result supplements the known theorems of C. Leudesdorf, N. Rama Rao and others. As the application it is obtained some connections between the sums $W(m,s)$ and Agoh’s functions, Wilson quotients, the indices irregularity of Bernoulli numbers. (English)
Keyword: Wolstenholme-Leudesdorf theorem
Keyword: p-integer number
Keyword: Bernoulli number
Keyword: Wilson quotient
Keyword: irregular prime number
MSC: 11A07
MSC: 11B68
idZBL: Zbl 1053.11003
idMR: MR1744517
.
Date available: 2008-06-06T22:24:38Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107704
.
Reference: [1] Agoh, T., Dilcher, K., Skula, L.: Wilson quotients for composite moduli.Comp. Math. 67 (1998). No. 222, 843–861. MR 1464140
Reference: [2] Bayat, M.: A generalization of Wolstenholme’s theorem.Amer. Math. Monthly 109 (1997), 557–560. Zbl 0916.11002, MR 1453658
Reference: [3] Dilcher, K., Skula, L., Slavutskii, I. Sh.: Bernoulli numbers. Bibliography (1713–1990).Queen’s papers in Pure and Applied Mathematics, 1991, No. 87, 175 pp.; Appendix, Preprint (1994), 30 pp. MR 1119305
Reference: [4] Hardy, G. H., Wright, E. M.: An introduction to theory of numbers.5th ed., Oxford Sci. Publ., 1979. MR 0067125
Reference: [5] Lehmer, E.: On congruences involving Bernoulli numbers and quotients of Fermat and Wilson.Ann. Math. 39 (2) (1938), 350–360. MR 1503412
Reference: [6] Leudesdorf, C.: Some results in the elementary theory of numbers.Proc. London Math. Soc. 20 (1889), 199–212.
Reference: [7] Rama Rao, M.: An extention of Leudesdorf theorem.J. London Math. Soc. 12 (1937), 247–250.
Reference: [8] Slavutskii, I.: Staudt and arithmetic properties on Bernoulli numbers.Hist. Scient. 5 (1995), 70–74. MR 1349737
Reference: [9] Slavutskii, I.: About von Staudt congruences for Bernoulli numbers.to appear. Zbl 1024.11011, MR 1713678
Reference: [10] Washington, L. C.: Introduction to cyclotomic fields.2nd ed., Springer-Verlag, New York, 1997. Zbl 0966.11047, MR 1421575
Reference: [11] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. Math. 5 (1862), 35–39.
.

Files

Files Size Format View
ArchMathRetro_035-1999-4_2.pdf 339.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo