1. R. P. Agarwal, D. O’Regan: 
The solutions set of integral inclusions on the half line. Analysis (2000), 1–7. 
MR 1759068 2. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina, B. N. Sadovskii: 
Measures of Noncompactness and Condensing Operators. (translated from Russian), Birkhauser, Berlin, 1992. 
MR 1153247 4. J. Andres G. Gabor, L. Górniewicz: 
Boundary value problems on infinite intervals. Trans. Amer. Math. Soc. 351 (1999), 4861–4903. 
MR 1603870 5. J. Andres G. Gabor, L. Górniewicz: Topological structure of solution sets to multivalued asymptotic problems. Z. Anal. Anwendungen 18, 4 (1999), 1–20.
 6. J. Andres G. Gabor, L. Górniewicz: 
Acyclicity of solutions sets to functional inclusions. Nonlinear Analysis TMA (to appear). 
MR 1894303 7. J. Andres, L. Górniewicz: 
On the Banach contraction principle for multivalued mappings. Lecture Notes in Mathematics (to appear). 
MR 1842872 8. J. Andres L. Górniewicz, M. Lewicka: 
Partially dissipative periodic processes. Banach Center Publ. 35 (1996), 109–118. 
MR 1448430 9. G. Anichini, P. Zecca: 
Multivalued differential equations in a Banach space: an application to control theory. J. Optim. Th. Appl. 21 (1977), 477–486. 
MR 0440144  10. N. Aronszajn: 
Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43 (1942), 730–738. 
MR 0007195 | 
Zbl 0061.17106 11. Z. Artstein: 
Continuous dependence on parameters of solutions of operator equations. Trans. Amer. Math. Soc. 231 (1977), 143–166. 
MR 0445351 12. A. Augustynowicz Z. Dzedzej, B. D. Gelman: 
The solution set to BVP for some functional differential inclusions. Set-Valued Analysis 6 (1998), 257–263. 
MR 1669783 13. R. Bader, W. Kryszewski: 
On the solution sets of constrained differential inclusions with applications. Set Valued Anal. (to appear). 
MR 1863363 | 
Zbl 0991.34011 14. M. E. Ballotti: 
Aronszajn’s theorem for a parabolic partial differential equation. Non-linear Anal. TMA 9, No. 11 (1985), 1183–1187. 
MR 0813652 | 
Zbl 0583.35053 15. J. Bebernes, M. Martelli: 
On the structure of the solution set for periodic boundary value problems. Nonlinear Anal. TMA 4, No. 4 (1980), 821–830. 
MR 0582550 | 
Zbl 0453.34019 16. J. Bebernes, K. Schmitt: 
Invariant sets and the Hukuhara–Kneser property for systems of parabolic partial differential equations. Rocky Mount. J. Math. 7, No. 3 (1967), 557–567. 
MR 0600519 17. R. Bielawski L. Górniewicz, S. Plaskacz: Topological approach to differential inclusions on closed sets of $R^n$.  Dynamics Reported 1 (1992), 225–250.
 18. D. Bielawski T. Pruszko: 
On the structure of the set of solutions of a functional equation with application to boundary value problems. Ann. Polon. Math. 53, No. 3 (1991), 201–209. 
MR 1109588 19. A. W. Bogatyrev: 
Fixed points and properties of solutions of differential inclusions. Math. Sbornik 47 (1983), 895–909 (in Russian). 
MR 0712098 20. A. Bressan A. Cellina, A. Fryszkowski: 
A class of absolute retracts in spaces of integrable functions. Proc. Amer. Math. Soc. 112 (1991), 413–418. 
MR 1045587 21. F. E. Browder, C. P. Gupta: 
Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26 (1969), 730–738. 
MR 0257826 | 
Zbl 0176.45401 22. J. Bryszewski L. Górniewicz, T. Pruszko: 
An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations. J. Math. Anal. Appl. 76 (1980), 107–115. 
MR 0586649 23. A. I. Bulgakov, L. N. Lyapin: 
Some properties of the set of solutions of a Volterra–Hammerstein integral inclusion. Diff. Uravni. 14, No. 8 (1978), 1043–1048. 
MR 0507406 | 
Zbl 0433.45018 24. A. I. Bulgakov, L. N. Lyapin: 
Certain properties of the set of solutions of the Volterra–Hammerstein integral inclusion. Differents. Uravn. 14, No. 8 (1978), 1465–1472. 
MR 0507406 25. A. I. Bulgakov, L. N. Lyapin: 
On the connectedness of sets of solutions of functional inclusions. Mat. Sbornik 119, No. 2 (1982), 295–300. 
MR 0675198 26. A. Cellina: 
On the existence of solutions of ordinary differential equations in a Banach space. Funkc. Ekvac. 14 (1971), 129–136. 
MR 0304805 27. A. Cellina: 
On the local existence of solutions of ordinary differential equations. Bull. Acad. Polon. Sci. 20 (1972), 293–296. 
MR 0315237 | 
Zbl 0255.34053 28. A. Cellina: 
On the nonexistence of solutions of differential equations in nonreflexive spaces. Bull. Amer. Math. Soc. 78 (1972), 1069–1072. 
MR 0312017 29. J. Chandra V. Lakshmikantham, A. R. Mitchell: 
Existence of solutions of boundary value problems for nonlinear second order systems in a Banach space. Nonlinear Anal. TMA 2 (1978), 157–168. 
MR 0512279 30. S. N. Chow, J. D. Schur: 
An existence theorem for ordinary differential equations in Banach spaces. Bull. Amer. Math. Soc. 77 (1971), 1018–1020. 
MR 0287127 31. S. N. Chow, J. D. Schur: 
Fundamental theory of contingent differential equations in Banach spaces. Trans. Amer. Math. Soc. 179 (1973), 133–144. 
MR 0324162 32. M. Cichoń, I. Kubiaczyk: 
Some remarks on the structure of the solutions set for differential inclusions in Banach spaces. J. Math. Anal. Appl. 233 (1999), 597–606. 
MR 1689606 33. A. Constantin: 
Stability of solution sets of differential equations with multivalued right hand side. J. Diff. Equs. 114 (1994), 243–252. 
MR 1302143 | 
Zbl 0808.34013 34. G. Conti W. Kryszewski, P. Zecca: 
On the solvability of systems of noncompact inclusions. Ann. Mat. Pura Appl. (4), 160 (1991), 371–408. 
MR 1163216 35. G. Conti V. V. Obukhovskii, P. Zecca: 
On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. (Preprint). 
MR 1448435 36. J.-F. Couchouron, M. Kamenskii: 
Perturbations d’inclusions paraboliques par des opérateurs condensants. C. R. Acad. Sci. Paris 320 (1995), Serie I. 1–6. 
MR 1340059 37. H. Covitz S. B. Nadler, Jr.: 
Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. 
MR 0263062 38. K. Czarnowski: 
Structure of the set of solutions of an initial-boundary value problem for a parabolic partial differential equations in an unbounded domain. Nonlinear Anal. TMA 27, no. 6 (1996), 723–729. 
MR 1399071 39. K. Czarnowski: 
On the structure of fixed point sets of ’k-set contractions’ in $B_0$ spaces. Demonstratio Math. 30 (1997), 233–244. 
MR 1469589 40. K. Czarnowski, T. Pruszko: 
On the structure of fixed point sets of compact maps in $B_0$ spaces with applications to integral and differential equations in unbounded domain. J. Math. Anal. Appl. 154 (1991), 151–163. 
MR 1087965 41. J. L. Davy: 
Properties of the solution set of a generalized differential equations. Bull. Austr. Math. Soc. 6 (1972), 379–389. 
MR 0303023 42. F. S. De Blasi: 
Existence and stability of solutions for autonomous multivalued differential equations in a Banach space. Rend. Accad. Naz. Lincei, Serie VII, 60 (1976), 767–774. 
MR 0481328 43. F. S. De Blasi: 
On a property of the unit sphere in a Banach space. Bull. Soc. Math. R. S. Roumaine 21 (1977), 259–262. 
MR 0482402 | 
Zbl 0365.46015 44. F. S. De Blasi: 
Characterizations of certain classes of semicontinuous multifunctions by continuous approximations. J. Math. Anal. Appl. 106, No. 1 (1985), 1–8. 
MR 0780314 | 
Zbl 0574.54012 45. F. S. De Blasi L. Górniewicz, G. Pianigiani: 
Topological degree and periodic solutions of differential inclusions. Nonlinear Anal. TMA 37 (1999), 217–245. 
MR 1689752 46. F. S. De Blasi, J. Myjak: 
On the solutions sets for differential inclusions. Bull. Polon. Acad. Sci. 33 (1985), 17–23. 
MR 0798723 | 
Zbl 0571.34008 47. F. S. De Blasi, J. Myjak, O: 
n the structure of the set of solutions of the Darboux problem for hyperbolic equations. Proc. Edinburgh Math. Soc., Ser. 2 29, No. 1 (1986), 7–14. 
MR 0829175 48. F. S. De Blasi, G. Pianigiani: 
On the solution sets of nonconvex differential inclusions. J. Diff. Equs. 128 (1996), 541–555. 
MR 1398331 | 
Zbl 0853.34013 49. F. S. De Blasi, G. Pianigiani: 
Solution sets of boundary value problems for nonconvex differential inclusions. Nonlinear Anal. TMA 1 (1993), 303–313. 
MR 1233098 | 
Zbl 0785.34018 50. F. S. De Blasi G. Pianigiani, V. Staicu: 
Topological properties of nonconvex differential inclusions of evolution type. Nonlinear Anal. TMA 24 (1995), 711–720. 
MR 1319080 51. K. Deimling: 
Periodic solutions of differential equations in Banach spaces. Man. Math. 24 (1978), 31–44. 
MR 0499551 | 
Zbl 0373.34032 52. K. Deimling: Open problems for ordinary differential equations in a Banach space. (in the book: Equationi Differenziali), Florence, 1978.
 53. K. Deimling, M. R. Mohana Rao: On solutions sets of multivalued differential equations. Applicable Analysis 30 (1988), 129–135.
 54. R. Dragoni J. W. Macki P. Nistri, P. Zecca: 
Solution Sets of Differential Equations in Abstract Spaces. Pitman Research Notes in Mathematics Series, 342, Longman, Harlow, 1996. 
MR 1427944 55. J. Dubois, P. Morales: 
On the Hukuhara–Kneser property for some Cauchy problems in locally convex topological vector spaces. Lecture Notes in Math. vol. 964, pp. 162–170, Springer, Berlin, 1982. 
MR 0693110 | 
Zbl 0509.34062 56. J. Dubois, P. Morales: 
Structure de l’ensemble des solutions du probléme dee Cauchy sous le conditions de Carathéodory. Ann. Sci. Math. Quebec 7 (1983), 5–27. 
MR 0699983 57. G. Dylawerski, L. Górniewicz: 
A remark on the Krasnosielskii translation operator. Serdica Math. J. 9 (1983), 102–107. 
MR 0725816 58. Z. Dzedzej, B. Gelman: 
Dimension of the solution set for differential inclusions. Demonstration Math. 26 (1993), 149–158. 
MR 1226553 | 
Zbl 0783.34008 59. V. V. Filippov: 
The topological structure of spaces of solutions of ordinary differential equations. Uspekhi Mat. Nauk 48 (1993), 103–154. (in Russian) 
MR 1227948 60. G. Gabor: 
On the acyclicity of fixed point sets of multivalued maps. TMNA 14 (1999), 327–343. 
MR 1766183 61. B. D. Gelman: 
On the structure of the set of solutions for inclusions with multivalued operators. in Global Analysis - Studies and Applications III, (ed. Yu. G. Borisovich and Yu. E. Glikhlikh), Lecture Notes in Math. vol. 1334, pp. 60–78, Springer, Berlin, 1988. 
MR 0964695 62. B. D. Gelman: 
Topological properties of fixed point sets of multivalued maps. Mat. Sb. 188, No. 12 (1997), 33–56. 
MR 1607367 63. A. N. Godunov: A counter example to Peano’s Theorem in an infinite dimensional Hilbert space. Vestnik Mosk. Gos. Univ., Ser. Mat. Mek. 5 (1972), 31–34.
 64. A. N. Godunov: 
Peano’s Theorem in an infinite dimensional Hilbert space is false even in a weakened form. Math. Notes 15 (1974), 273–279. 
MR 0352640 65. K. Goebel, W. Rzymowski: 
An existence theorem for the equation x = f (t, x) in Banach spaces. Bull. Acad. Polon. Math. 18 (1970), 367–370. 
MR 0269957 66. L. Górniewicz: Topological approach to differential inclusions. in: A. Granas and H. Frigon eds., NATO ASI Series C 472, Kluwer, 1975.
 67. L. Górniewicz: Homological methods in fixed point theory of multivalued mappings. Dissertationes Math. 129 (1976), 1–71.
 68. L. Górniewicz: 
On the solution sets of differential inclusions. J. Math. Anal. Appl. 113 (1986), 235–244. 
MR 0826673 69. L. Górniewicz: 
Topological Fixed Point Theory of Multivalued Mappings. Kluwer, Dordrecht, 1999. 
MR 1748378 70. L. Górniewicz, S. A. Marano: 
On the fixed point set of multivalued contractions. Rend. Circ. Mat. Palermo 40 (1996), 139–145. 
MR 1407087 71. L. Górniewicz S. A. Marano, M. Slosarski: 
Fixed points of contractive multivalued maps. Proc. Amer. Math. Soc. 124 (1996), 2675–2683. 
MR 1317038 72. L. Górniewicz P. Nistri, V. V. Obukovskii: Differential inclusions on proximate retracts of Hilbert spaces. Int. J. Nonlinear Diff. Equs. TMA 3 (1980), 13–26.
 73. L. Górniewicz, T. Pruszko: 
On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Math. 28, No. 5-6 (1980), 279–286. 
MR 0620202 74. L. Górniewicz, M. Slosarski: 
Topological and differential inclusions. Bull. Austr. Math. Soc. 45 (1992), 177–193. 
MR 1155476 75. G. Haddad: 
Topological properties of the sets of solutions for functional differential inclusions. Nonlinear Anal. TMA 5, No. 12 (1981), 1349-1366. 
MR 0646220 | 
Zbl 0496.34041 76. A. J. Heunis: 
Continuous dependence of the solutions of an ordinary differential equation. J. Diff. Eqns. 54 (1984), 121–138. 
MR 0757289 | 
Zbl 0547.34007 77. C. J. Himmelberg, F. S. Van Vleck: 
On the topological triviality of solution sets. Rocky Mountain J. Math. 10 (1980), 247–252. 
MR 0573874 | 
Zbl 0456.34004 78. C. J. Himmelberg, F. S. Van Vleck: 
A note on the solution sets of differential inclusions. Rocky Mountain J. Math. 12 (1982), 621–625. 
MR 0683856 | 
Zbl 0531.34007 79. T. S. Hu, N. S. Papageorgiou: 
On the topological regularity of the solution set of differential inclusions with constrains. J. Diff. Equat. 107 (1994), 280–289. 
MR 1264523 80. M. Hukuhara: Sur les systémes des équations differentielles ordinaires. Japan J. Math. 5 (1928), 345–350.
 81. D. M. Hyman: 
On decreasing sequence of compact absolute retracts. Fund. Math. 64 (1959), 91–97. 
MR 0253303 82. J. Jarník, J. Kurzweil: 
On conditions on right hand sides of differential relations. Časopis pro Pěst. Mat. 102 (1977), 334–349. 
MR 0466702 83. M. I. Kamenskii: 
On the Peano Theorem in infinite dimensional spaces. Mat. Zametki 11, No. 5 (1972), 569–576. 
MR 0304808 84. M. I. Kamenskii, V. V. Obukovskii: 
Condensing multioperators and periodic solutions of parabolic functional - differential inclusions in Banach spaces. Nonlinear Anal. TMA 20 (1991), 781–792. 
MR 1214743 85. R. Kannan J. J. Nieto, M. B. Ray: 
A class of nonlinear boundary value problems without Landesman–Lazer condition. J. Math. Anal. Appl. 105 (1985), 1–11. 
MR 0773569 86. A. Kari: 
On Peano’s Theorem in locally convex spaces. Studia Math. 73, No. 3 (1982), 213–223. 
MR 0675425 | 
Zbl 0507.34047 87. W. G. Kelley: 
A Kneser theorem for Volterra integral equations. Proc. Amer. Math. Soc. 40, No. 1 (1973), 183–190. 
MR 0316983 | 
Zbl 0244.45003 88. M. Kisielewicz: 
Multivalued differential equations in separable Banach spaces. J. Optim. Th. Appl. 37, No. 2 (1982), 231–249. 
MR 0663523 | 
Zbl 0458.34008 89. H. Kneser: Über die Lösungen eine system gewöhnlicher differential Gleichungen das der lipschitzchen Bedingung nicht genügt. S. B. Preuss. Akad. Wiss. Phys. Math. Kl. 4 (1923), 171–174.
 90. A. Kolmogorov, S. Fomin: 
Elements of the Theory of Functions and Functional Analysis. Graylock, New York, 1957. 
MR 0085462 91. M. A. Krasnoselskii P. P. Zabreiko: 
Geometrical Methods of Nonlinear Analysis. Springer-Verlag, Heidelberg 1984. 
MR 0736839 92. W. Kryszewski: 
Topological and approximation methods in the degree theory of set-valued maps. Dissertationes Math. 336 (1994), 1–102. 
MR 1307460 93. P. Krbec, J. Kurzweil: 
Kneser’s theorem for multivalued, differential delay equations. Časopis pro Pěst. Mat. 104, No. 1 (1979), 1–8. 
MR 0523570 | 
Zbl 0405.34059 94. Z. Kubíček: 
A generalization of N. Aronszajn’s theorem on connectedness of the fixed point set of a compact mapping. Czech. Math. J. 37, No. 112 (1987), 415–423. 
MR 0904769 95. Z. Kubíček: On the structure of the fixed point sets of some compact maps in the Fréchet space. Math. Bohemica 118 (1993), 343–358.
 96. Z. Kubíček: 
On the structure of the solution set of a functional differential system on an unbounded interval. Arch. Math. (Brno) 35 (1999), 215–228. 
MR 1725839 97. I. Kubiaczyk: 
Structure of the sets of weak solutions of an ordinary differential equation in a Banach space. Ann. Polon. Math. 44, No. 1 (1980), 67–72. 
MR 0764805 98. I. Kubiaczyk: 
Kneser’s Theorem for differential equations in Banach spaces. J. Diff. Equs. 45, No. 2 (1982), 139–147. 
MR 0665991 99. I. Kubiaczyk, S. Szufla: 
Kneser’s Theorem for weak solutions of ordinary differential equations in Banach spaces. Publ. Inst. Math. (Beograd) (NS) 32, No. 46 (1982), 99–103. 
MR 0710975 100. A. Lasota, J. A. Yorke: 
The generic property of existence of solutions of differential equations in Banach spaces. J. Diff. Equs. 13 (1973), 1–12. 
MR 0335994 101. J. M. Lasry, R. Robert: Analyse Non Linéaire Multivoque. Cahiers de Math. de la Decision, Paris, No. 7611, 1977.
 102. J. M. Lasry, R. Robert: 
Acyclicité de l’ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282, No. 22A (1976), 1283–1286.  
MR 0436195 103. T. C. Lim: 
On fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436–441. 
MR 0805266 104. T. Ma: 
Topological degrees of set-valued compact fields in locally convex spaces. Dissertationes Math. XCII (1972), 1–47. 
MR 0309103 105. S. Marano, V. Staicu: 
On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungarica 76 (1997), 287–301. 
MR 1459237 | 
Zbl 0907.34010 106. A. Margheri, P. Zecca: A note on the topological structure of solution sets of Sturm–Liouville problems in Banach spaces. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Math. Nat., (to appear).
 107. H. Monch: 
Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. TMA 4 (1980), 985–999. 
MR 0586861 108. H. Monch, G. von Harten: 
On the Cauchy problem for ordinary differential equations in Banach spaces. Arch. Math. 39 (1982), 153–160. 
MR 0675655 109. A. M. Muhsinov: On differential inclusions in a Banach space. Soviet Math. Dokl. 15 (1974), 1122–1125.
 110. J. J. Nieto: 
Periodic solutions of nonlinear parabolic equations. J. Diff. Equs. 60, No. 1 (1985), 90–102. 
MR 0808259 | 
Zbl 0537.35049 111. J. J. Nieto: 
Nonuniqueness of solutions of semilinear elliptic equations at resonance. Boll. Un. Mat. Ital. 6, 5-A, No. 2, (1986), 205–210. 
MR 0850289 112. J. J. Nieto: 
Structure of the solution set for semilinear elliptic equations. Colloq. Math. Soc. Janos Bolyai, 47 (1987), 799–807. 
MR 0890578 | 
Zbl 0654.35035 113. J. J. Nieto: 
Hukuhara–Kneser property for a nonlinear Dirichlet problem. J. Math. Anal. Appl. 128 (1987), 57–63. 
MR 0915966 | 
Zbl 0648.34019 114. J. J. Nieto: 
Decreasing sequences of compact absolute retracts and nonlinear problems. Boll. Un. Mat. Ital. 2-B, No. 7 (1988), 497–507. 
MR 0963315 | 
Zbl 0667.47035 115. J. J. Nieto: 
Aronszajn’s theorem for some nonlinear Dirichlet problem. Proc. Edinburg Math. Soc. 31 (1988), 345–351. 
MR 0969064 116. J. J. Nieto: Nonlinear second order periodic value problems with Carathéodory functions. Appl. Anal. 34 (1989), 111–128.
 117. J. J. Nieto: 
Periodic Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation. Ann. Polon. Math. 54, No. 2 (1991), 111–116. 
MR 1104733 | 
Zbl 0737.35032 118. J. J. Nieto, L. Sanchez: 
Periodic boundary value problems for some Duffing equations. Diff. and Int. Equs. 1, No. 4 (1988), 399–408. 
MR 0945817 119. V. V. Obukhovskii: 
Semilinear functional differential inclusions in a Banach space and controlled parabolic systems. Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71–79. 
MR 1173399 120. C. Olech: 
On the existence and uniqueness of solutions of an ordinary differential equation in the case of a Banach space. Bull. Acad. Polon. Math. 8 (1969), 667–673. 
MR 0147733 121. N. S. Papageorgiou: 
Kneser’s Theorem for differential equations in Banach spaces. Bull. Austral. Math. Soc. 33, No. 3 (1986), 419–434. 
MR 0837488 122. N. S. Papageorgiou: 
On the solution set of differential inclusions in a Banach space. Appl. Anal. 25, No. 4 (1987), 319–329. 
MR 0912190 123. N. S. Papageorgiou: 
A property of the solution set of differential inclusions in Banach spaces with a Carathéodory orientor field. Appl. Anal. 27, No. 4 (1988), 279–287. 
MR 0936472 124. N. S. Papageorgiou: 
On the solution set of differential inclusions with state constraints. Appl. Anal. 31 (1989), 279–289. 
MR 1017517 | 
Zbl 0698.34015 125. N. S. Papageorgiou: 
Convexity of the orientor field and the solution set of a class of evolution inclusions. Math. Slovaca 43 (1993), no. 5, 593–615. 
MR 1273713 126. N. S. Papageorgiou: 
On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type. Comment. Math. Univ. Carolin. 34 (1993), no. 4, 673–687. 
MR 1263796 | 
Zbl 0792.34014 127. N. S. Papageorgiou: 
A property of the solution set of nonlinear evolution inclusions with state constraints. Math. Japon. 38 (1993), no. 3, 559–569. 
MR 1221027 | 
Zbl 0777.34043 128. N. S. Papageorgiou: 
On the solution set of nonlinear evolution inclusions depending on a parameter. Publ. Math. Debrecen 44 (1994), no. 1–2, 31–49. 
MR 1269967 | 
Zbl 0824.34018 129. N. S. Papageorgiou: 
On the solution set of nonconvex subdifferential evolution inclusions. Czechoslovak Math. J. 44 (1994), no. 3, 481–500. 
MR 1288166 | 
Zbl 0868.34010 130. N. S. Papageorgiou: 
On the topological regularity of the solution set of differential inclusions with constraints. J. Diff. Equs. 107 (1994), no. 2, 280–289. 
MR 1264523 | 
Zbl 0796.34017 131. N. S. Papageorgiou: 
On the topological properties of the solution set of evolution inclusions involving time-dependent subdifferential operators. Boll. Un. Mat. Ital. 9 (1995), no. 2, 359–374. 
MR 1333967 | 
Zbl 0845.34066 132. N. S. Papageorgiou: 
On the properties of the solution set of semilinear evolution inclusions. Nonlinear Anal. TMA 24 (1995), no. 12, 1683–1712. 
MR 1330643 | 
Zbl 0831.34014 133. N. S. Papageorgiou: 
Topological properties of the solution set of integrodifferential inclusions. Comment. Math. Univ. Carolin. 36 (1995), no. 3, 429–442. 
MR 1364483 | 
Zbl 0836.34019 134. N. S. Papageorgiou: 
On the solution set of nonlinear integrodifferential inclusions in $R^N$.  Math. Japon. 46 (1997), no. 1, 117–127. 
MR 1466124 135. N. S. Papageorgiou: 
Topological properties of the solution set of a class of nonlinear evolutions inclusions. Czechoslovak Math. J. 47 (1997), no. 3, 409–424. 
MR 1461421 136. N. S. Papageorgiou: 
On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Rend. Sem. Mat. Univ. Padova 97 (1997), 163–186. 
MR 1476169 | 
Zbl 0893.34060 137. N. S. Papageorgiou, F. Papalini: 
On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Acta Math. Univ. Comenian. (N.S.) 65 (1996), no. 1, 33–51. 
MR 1422293 | 
Zbl 0865.34049 138. N. S. Papageorgiou N. Shahzad: 
Properties of the solution set of nonlinear evolution inclusions. Appl. Math. Optim. 36 (1997), no. 1, 1–20. 
MR 1446789 139. G. Peano: Sull’integrabilité delle equazioni differenziali del primo ordine. Atti della Reale Accad. dell Scienze di Torino 21 (1886), 677–685.
 140. G. Peano: Démonstration de l’integrabilite des équations differentielles ordinaires. Mat. Annalen 37 (1890), 182–238.
 141. W. V. Petryshyn: 
Note on the structure of fixed point sets of 1-set–contractions. Proc. Amer. Math. Soc. 31 (1972), 189–194. 
MR 0285944 142. G. Pianigiani: 
Existence of solutions of ordinary differential equations in Banach spaces. Bull. Acad. Polon. Math. 23 (1975), 853–857. 
MR 0393710 143. S. Plaskacz: 
On the solution sets for differential inclusions. Boll. Un. Mat. Ital. 7, 6-A (1992), 387–394. 
MR 1196133 | 
Zbl 0774.34012 145. B. Ricceri: 
Une propriété topologique de l’ensemble des points fixes d’une contraction multivoque à valeurs convexes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), 283–286. 
MR 0999821 146. B. N. Sadovskii: 
On measures of noncompactness and contracting operators. in Problems in the Mathematical Analysis of Complex Systems, second edition, Voronezh (1968), 89–119. (in Russian) 
MR 0301582 147. B. N. Sadovskii: 
Limit-compact and condensing operators. Uspekh. Mat. Nauk 27 (1972), 1–146. (in Russian) 
MR 0428132 148. K. Schmitt, P. Volkmann: 
Boundary value problems for second order differential equations in convex subsets in a Banach space. Trans. Amer. Math. Soc. 218 (1976), 397–405. 
MR 0397110 149. V. Šeda: 
Fredholm mappings and the generalized boundary value problem. Diff. Integral Equs. 8 (1995), 19–40. 
MR 1296108 150. V. Šeda: 
Generalized boundary value problems and Fredholm mappings. Nonlinear Anal. TMA 30 (1997), 1607-1616. 
MR 1490083 151. V. Šeda: Rδ -set of solutions to a boundary value problem. TMNA, (to appear).
 152. J. S. Shin: 
Kneser type theorems for functional differential equations in a Banach space. Funk. Ekvacioj 35 (1992), 451–466. 
MR 1199467 | 
Zbl 0785.34049 153. Z. Song: 
Existence of generalized solutions for ordinary differential equations in Banach spaces. 3. Math. Anal. Appl. 128 (1987), 405–412. 
MR 0917374 | 
Zbl 0666.34068 154. W. Sosulski: 
Compactness and upper semi continuity of solution set of functional differential equations of hyperbolic type. Comment. Mat. Prace. Mat. 25, No. 2 (1985), 359–362. 
MR 0844652 155. V. Staicu: 
Qualitative propeties of solutions sets to Lipschitzian differential inclusions. World Sci. Publ. (Singapore 1993), 910–914. 
MR 1242362 156. S. Szufla: 
Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Math. 16 (1968), 795–800. 
MR 0239238 157. S. Szufla: 
Measure of noncompactness and ordinary differential equations in Banach spaces. Bull Acad. Polon. Sci. 19 (1971), 831–835. 
MR 0303043 158. S. Szufla: 
Structure of the solutions set of ordinary differential equations in a Banach space. Bull. Acad. Polon. Sci. 21, No. 2 (1973), 141–144. 
MR 0333390 159. S. Szufla: 
Solutions sets of nonlinear equations. Bull. Acad. Polon. Sci. 21, No. 21 (1973), 971–976. 
MR 0344959 160. S. Szufla: 
Some properties of the solutions set of ordinary differential equations. Bull. Acad. Polon. Sci. 22, No. 7 (1974), 675–678. 
MR 0355245 161. S. Szufla: 
On the structure of solutions sets of differential and integral equations in Banach spaces. Ann. Polon. Math. 34 (1977), 165–177. 
MR 0463608 162. S. Szufla: 
On the equation x = f (t, x) in Banach spaces. Bull. Acad. Polon. Sci. 26, No. 5 (1978), 401–406. 
MR 0499578 163. S. Szufla: 
Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci. 26, No. 5 (1978), 407–413. 
MR 0492684 164. S. Szufla: 
Sets of fixed points nonlinear mappings in function spaces. Funkcial. Ekvac. 22 (1979), 121–126. 
MR 0551256 165. S. Szufla: 
On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Polon. Sci. 30, No. 11–12 (1982), 507–515. 
MR 0718727 166. S. Szufla: 
On the equation x = f (t, x) in locally convex spaces. Math. Nachr. 118 (1984), 179–185. 
MR 0773619 167. S. Szufla: 
Existence theorems for solutions of integral equations in Banach spaces. Proc. Conf. Diff. Equs. and Optimal Control, Zielona Góra (1985), 101–107. 
MR 0937926 168. S. Szufla: 
On the application of measure of noncompactness to differential and integral equations in a Banach space. Fasc. Math. 18 (1988), 5–11. 
MR 0988763 169. P. Talaga: 
The Hukuhara–Kneser property for parabolic systems with nonlinear boundary conditions. J. Math. Anal. 79 (1981), 461–488. 
MR 0606494 | 
Zbl 0457.35042 170. P. Talaga: 
The Hukuhara–Kneser property for quasilinear parabolic equations. Non-linear Anal. TMA 12, No. 3 (1988), 231–245. 
MR 0928558 | 
Zbl 0678.35052 171. A. A. Tolstonogov: 
On differential inclusions in a Banach space and continuous selectors. Dokl. Akad. Nauk SSSR 244 (1979), 1088–1092. 
MR 0522051 172. A. A. Tolstonogov: 
On properties of solutions of differential inclusions in a Banach space. Dokl. Akad. Nauk SSSR 248 (1979), 42–46. 
MR 0549368 | 
Zbl 0441.34045 173. A. A. Tolstonogov: 
On the structure of the solution set for differential inclusions in a Banach space. Math. Sbornik, 46 (1983), 1–15. (in Russian) 
Zbl 0564.34065 175. G. Vidossich: 
On the structure of the set of solutions of nonlinear equations. J. Math. Anal. Appl. 34 (1971), 602–617. 
MR 0283645 176. G. Vidossich: 
A fixed point theorem for function spaces. J. Math. Anal. Appl. 36 (1971), 581–587. 
MR 0285945 177. G. Vidossich: 
Existence, uniqueness and approximation of fixed points as a generic property. Bol. Soc. Brasil. Mat. 5 (1974), 17–29. 
MR 0397710 178. G. Vidossich: 
Two remarks on global solutions of ordinary differential equations in the real line. Proc. Amer. Math. Soc. 55 (1976), 111–115. 
MR 0470291 | 
Zbl 0339.34004 179. T. Wazewski: 
Sur l’existence et l’unicité des integrales des équations différentielles ordinaires au cas de l’espace de Banach. Bull. Acad. Polon. Math. 8 (1960), 301–305. 
MR 0131038 | 
Zbl 0093.08405 180. J. A. Yorke: 
Spaces of solutions. Lect. Notes Op. Res. Math. Econ. vol. 12, Springer-Verlag, (1969), 383–403. 
MR 0361294 | 
Zbl 0188.15502 181. J. A. Yorke: 
A continuous differential equation in a Hilbert space without existence. Funkc. Ekvac. 13 (1970), 19–21. 
MR 0264196 182. R. R. Akhmerov: 
The structure of the solution set of a boundary value problem for a one-dimensional stationary equation of variable type. Chisl. Metody Mekh. Sploshn. Sredy, 15 (1984), 20–30. 
MR 0813536 183. J. C. Alexander I. Massabò, J. Pejsachowicz: 
On the connectivity properties of the solution set of infinitely-parametrized families of vector fields. Boll. Un. Mat. Ital.A (6), 1 (1982), 309–312. 
MR 0663297 184. A. Anguraj, K. Balachandran: 
On the solution sets of differential inclusion in Banach spaces. Tamkang J. Math., 23 (1992), 59–65. 
MR 1164448 | 
Zbl 0760.34018 185. G. Anichini, G. Conti: 
How to make use of the solution set to solve boundary value problems. Recent Trends in Nonlinear Analysis, Birkhäuser, Basel, 2000, 15–25. 
MR 1763129 | 
Zbl 0949.34009 186. G. Anichini G. Conti, P. Zecca: 
Using solution sets for solving boundary value problems for ordinary differential equations. Nonlinear Anal., 17 (1991), 465–472. 
MR 1124119 187. M. T. Ashordiya: 
The structure of the solution set of the Cauchy problem for a system of generalized ordinary differential equations. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 17 (1986), 5–16. 
MR 0853272 188. E. P. Avgerinos, N. S. Papageorgiou: 
On the solution set of maximal monotone differential inclusions in $\mathbb R^m$. Math. Japon., 38 (1993), 91–110. 
MR 1204188 189. E. P. Avgerinos, N. S. Papageorgiou: 
Topological properties of the solution set of integrodifferential inclusions. Comment. Math. Univ. Carolin., 36 (1995), 429–442. 
MR 1364483 | 
Zbl 0836.34019 190. G. Bartuzel, A. Fryszkowski: 
A topological property of the solution set to the Sturm–Liouville differential inclusions. Demonstratio Math., 28 (1995), 903–914. 
MR 1392243 | 
Zbl 0886.47026 191. J. W. Bebernes: 
Solution set properties for some nonlinear parabolic differential equations. Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977) Springer, Berlin, 1979, 25–30. 
MR 0535319 192. V. I. Blagodatskikh, P. Ndiĭ : 
Convexity of the solution set of a differential inclusion. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., (1998), 21–22. 
MR 1657954 193. F. S. De Blasi G. Pianigiani, V. Staicu: 
On the solution sets of some nonconvex hyperbolic differential inclusions. Czechoslovak Math. J., 45 (1995), 107–116. 
MR 1314533 194. D. Bugajewska: 
On implicit Darboux problem in Banach spaces. Bull. Austral. Math. Soc., 56 (1997), 149–156. 
MR 1464057 195. D. Bugajewska: 
On the equation of nth order and the Denjoy integral. Nonlinear Anal., 34 (1998), 1111–1115. 
MR 1637221 196. D. Bugajewska: 
A note on the global solutions of the Cauchy problem in Banach spaces. Acta Math. Hung., 88 (2000), 341–346. 
MR 1789046 197. D. Bugajewska: 
On the structure of solution sets of differential equations in Banach spaces. Math. Slovaca, 50 (2000), 463–471. 
MR 1857301 198. D. Bugajewska, D. Bugajewski : 
On the equation $x_{ap}^{(n)} = f (t, x)$. Czech. Math. Journal, 46 (1996), 325–330. 
MR 1388620 199. D. Bugajewska, D. Bugajewski: 
On nonlinear equations in Banach spaces and axiomatic measures of noncompactness. Funct. Differ. Equ., 5 (1998), 57–68. 
MR 1681184 | 
Zbl 1049.45013 200. D. Bugajewski: 
On the structure of the $L^{p1 ,p2}$ -solution sets of Volterra integral equations in Banach spaces. Comment. Math. Prace Mat., 30 (1991), 253–260. 
MR 1122694 | 
Zbl 0745.45004 201. D. Bugajewski: 
On differential and integral equations in locally convex spaces. Demonstr. Math., 28 (1995), 961–966. 
MR 1392249 | 
Zbl 0855.34071 202. D. Bugajewski: 
On the structure of solution sets of differential and integral equations, and the Perron integral. Proceedings of the Prague Mathematical Conference 1996, Icaris, Prague, 1997, 47–51. 
MR 1703455 | 
Zbl 0966.34041 203. D. Bugajewski, S. Szufla: 
Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces. Nonlinear Anal., 20 (1993), 169–173. 
MR 1200387 204. D. Bugajewski, S. Szufla: 
On the Aronszajn property for differential equations and the Denjoy integral. Comment. Math., 35 (1995), 61–69. 
MR 1384852 205. T. Cardinali: 
On the structure of the solution set of evolution inclusions with Fréchet subdifferentials. J. Appl. Math. Stochastic Anal., 13 (2000), 51–72. 
MR 1751029 | 
Zbl 0966.34052 206. T. Cardinali A. Fiacca, N. S. Papageorgiou: 
On the solution set of nonlinear integrodifferential inclusions in $\bold R^N$ . Math. Japon., 46 (1997), 117–127. 
MR 1466124 207. C. Castaing, M. Marques: 
Topological properties of solution sets for sweeping processes with delay. Portugal. Math., 54 (1997), 485–507. 
MR 1489988 | 
Zbl 0895.34053 208. A. Cellina, A. Ornelas: 
Convexity and the closure of the solution set to differential inclusions. Boll. Un. Mat. Ital. B (7), 4 (1990), 255–263. 
MR 1061215 | 
Zbl 0719.34031 209. R. M. Colombo A. Fryszkowski T. Rzezuchowski, V. Staicu: 
Continuous selections of solution sets of Lipschitzean differential inclusions. Funkcial. Ekvac., 34 (1991), 321–330. 
MR 1130468 210. A. Constantin: 
On the stability of solution sets for operational differential inclusions. An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 115–124. 
MR 1263091 | 
Zbl 0799.34016 211. G. Conti V. Obukhovskiĭ, P. Zecca: 
On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. Topology in Nonlinear Analysis, Polish Acad. Sci., Warsaw, 1996, 159–169. 
MR 1448435 212. K. Deimling: 
On solution sets of multivalued differential equations. Appl. Anal., 30 (1988), 129–135. 
MR 0967566 | 
Zbl 0635.34014 213. K. Deimling: 
Bounds for solution sets of multivalued ODEs. Recent Trends in Differential Equations, World Sci. Publishing, River Edge, NJ, 1992, 127–134. 
MR 1180107 | 
Zbl 0832.34009 214. P. Diamond, P. Watson: 
Regularity of solution sets for differential inclusions quasi-concave in a parameter. Appl. Math. Lett., 13 (2000), 31–35. 
MR 1750963 | 
Zbl 0944.34008 215. Y. H. Du: 
The structure of the solution set of a class of nonlinear eigenvalue problems. J. Math. Anal. Appl., 170 (1992), 567–580. 
MR 1188572 | 
Zbl 0784.35080 216. V. V. Filippov: 
On the acyclicity of solution sets of ordinary differential equations. Dokl. Akad. Nauk, 352 (1997), 28–31. 
MR 1445851 217. A. Gavioli: 
On the solution set of the nonconvex sweeping process. Discuss. Math. Differential Incl., 19 (1999), 45–65. 
MR 1758498 | 
Zbl 0954.34036 218. V. V. Goncharov: 
Co-density and other properties of the solution set of differential inclusions with noncompact right-hand side. Discuss. Math. Differential Incl., 16 (1996), 103–120. 
MR 1646626 | 
Zbl 0906.34012 219. T. G. Hallam, J. W. Heidel: 
Structure of the solution set of some first order differential equations of comparison type. Trans. Amer. Math. Soc., 160 (1971), 501–512. 
MR 0281995 220. G. Herzog, R. Lemmert: 
On the structure of the solution set of $u′′ = f (t, u)$, $u(0) = u(1) = 0$. Math. Nachr., 215 (2000), 103–105. 
MR 1768196 | 
Zbl 0953.34054 221. S. C. Hu V. Lakshmikantham, N. S. Papageorgiou: 
On the solution set of nonlinear evolution inclusions. Dynamic Systems Appl., 1 (1992), 71–82. 
MR 1154650 | 
Zbl 0755.34057 222. S. C. Hu V. Lakshmikantham, N. S. Papageorgiou: 
On the properties of the solution set of semilinear evolution inclusions. Nonlinear Anal., 24 (1995), 1683–1712. 
MR 1330643 | 
Zbl 0831.34014 223. A. G. Ibrahim, A. M. Gomaa: 
Topological properties of the solution sets of some differential inclusions. Pure Math. Appl., 10 (1999), 197–223. 
MR 1742594 | 
Zbl 0977.34008 224. G. Isac, G. X.-Z. Yuan: 
Essential components and connectedness of solution set for complementarity problems. Fixed Point Theory and Applications (Chinju, 1998), Nova Sci. Publ., Huntington, NY, 2000, 35–46. 
MR 1761212 225. N. A. Izobov: 
The measure of the solution set of a linear system with the largest lower exponent. Differentsial’nye Uravneniya, 24 (1988), 2168–2170, 2207. 
MR 0982150 226. M. Kamenskiĭ V. Obukhovskiĭ, P. Zecca: 
Method of the solution sets for a quasilinear functional-differential inclusion in a Banach space. Differential Equations Dynam. Systems, 4 (1996), 339–350. 
MR 1655630 227. R. Kannan, D. O’Regan: 
A note on the solution set of integral inclusions. J. Integral Equations Appl., 12 (2000), 85–94. 
MR 1760899 228. Z. Kánnai, P. Tallos: 
Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged), 61 (1995), 197–207. 
MR 1377359 229. M. Kisielewicz: 
Continuous dependence of solution sets for generalized differential equations of neutral type. Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis. Rend. (13), 8 (1980/81), 191–195. 
MR 0695193 230. M. Kisielewicz: 
Compactness and upper semicontinuity of solution set of generalized differential equation in a separable Banach space. Demonstratio Math., 15 (1982), 753–761. 
MR 0693538 231. M. Kisielewicz: 
Properties of solution set of stochastic inclusions. J. Appl. Math. Stochastic Anal., 6 (1993), 217–235. 
MR 1238600 | 
Zbl 0796.93106 232. M. Kisielewicz: 
Quasi-retractive representation of solution sets to stochastic inclusions. J. Appl. Math. Stochastic Anal., 10 (1997), 227–238. 
MR 1468117 | 
Zbl 1043.34505 233. B. S. Klebanov, V. V. Filippov: 
On the acyclicity of the solution set of the Cauchy problem for differential equations. Mat. Zametki, 62 (1997). 
MR 1635158 234. P. Korman: 
The global solution set for a class of semilinear problems. J. Math. Anal. Appl., 226 (1998), 101–120. 
MR 1646477 | 
Zbl 0911.34016 235. A. V. Lakeev, S. I. Noskov: 
Description of the solution set of a linear equation with an interval-defined operator and right-hand side. Dokl. Akad. Nauk, 330 (1993), 430–433. 
MR 1241970 236. V. P. Maksimov: 
On the parametrization of the solution set of a functional-differential equation. Funct. Differ. Equ., Perm. Politekh. Inst., Perm, (1988), 14–21. (in Russian) 
MR 1066717 237. V. P. Maksimov: 
On the parametrization of the solution set of a functional-differential equation. Funct. Differ. Equ., 3 (1996), 371–378. 
MR 1459318 | 
Zbl 0881.34076 238. A. Margheri, P. Zecca: 
Solution sets and boundary value problems in Banach spaces. Topol. Methods Nonlinear Anal., 2 (1993), 179–188. 
MR 1245485 | 
Zbl 0799.34069 239. A. Margheri, P. Zecca: 
Solution sets of multivalued Sturm–Liouville problems in Banach spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1994), 161–166. 
MR 1292571 | 
Zbl 0809.34026 240. J. T. Markin: 
Stability of solution sets for generalized differential equations. J. Math. Anal. Appl., 46 (1974), 289–291. 
MR 0348218 | 
Zbl 0293.34004 241. M. Martelli, A. Vignoli: 
On the structure of the solution set of nonlinear equations. Nonlinear Anal., 7 (1983), 685–693. 
MR 0707077 | 
Zbl 0519.47037 242. I. Massabò, J. Pejsachowicz: 
On the connectivity properties of the solution set of parametrized families of compact vector fields. J. Funct. Anal., 59 (1984), 151–166. 
MR 0766486 243. P. S. Milojević: 
On the index and the covering dimension of the solution set of semilinear equations. Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), Amer. Math. Soc., Providence, R.I., 1986, 183–205. 
MR 0843608 244. P. S. Milojević: 
On the dimension and the index of the solution set of nonlinear equations. Trans. Amer. Math. Soc., 347 (1995), 835–856. 
MR 1282894 245. O. Naselli: 
On the solution set of an equation of the type $f (t, \Phi(u)(t)) = 0$. Set-Valued Anal., 4 (1996), 399–405. 
MR 1422403 | 
Zbl 0873.47041 246. J. J. Nieto: 
On the structure of the solution set for first order differential equations. Appl. Math. Comput., 16 (1985), 177–187. 
MR 0780794 247. J. J. Nieto: 
Structure of the solution set for semilinear elliptic equations. Differential Equations: Qualitative Theory, Vol. I, II (Szeged, 1984), North-Holland, Amsterdam, 1987, 799–807. 
MR 0890578 248. W. Orlicz, S. Szufla: 
On the structure of $L^\varphi $-solution sets of integral equations in Banach spaces. Studia Math., 77 (1984), 465–477. 
MR 0751767 249. V. G. Osmolovskiĭ: 
The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points. Sibirsk. Mat. Zh., 27 (1986), 140–154, 206. 
MR 0873718 250. N. S. Papageorgiou: 
On the solution set of evolution inclusions driven by time dependent subdifferentials. Math. Japon., 37 (1992), 1087–1099. 
MR 1196384 | 
Zbl 0810.34059 251. F. Papalini: 
Properties of the solution set of evolution inclusions. Nonlinear Anal., 26 (1996), 1279–1292. 
MR 1376103 | 
Zbl 0849.34017 252. M. P. Pera: 
A topological method for solving nonlinear equations in Banach spaces and some related global results on the structure of the solution sets. Rend. Sem. Mat. Univ. Politec. Torino, 41 (1983), 9–30. 
MR 0778859 | 
Zbl 0568.47038 253. E. S. Polovinkin: 
The properties of continuity and differentiation of solution sets of Lipschitzean differential inclusions Modeling. Estimation and Control of Systems with Uncertainty (Sopron, 1990), Birkhäuser, Boston, 1991, 349–360. 
MR 1132282 254. B. Ricceri: 
On the topological dimension of the solution set of a class of nonlinear equations. C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 65–70. 
MR 1461399 | 
Zbl 0884.47043 255. L. E. Rybiński: A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions. J. Math. Anal. Appl., 160 (1991), 24–46.
 256. E. Serra M. Tarallo, S. Terracini: 
On the structure of the solution set of forced pendulum-type equations. J. Differ. Equ., 131 (1996), 189–208. 
MR 1419011 257. A. Sghir: 
On the solution set of second-order delay differential inclusions in Banach spaces. Ann. Math. Blaise Pascal, 7 (2000), 65–79. 
MR 1769982 | 
Zbl 0958.34048 258. W. Song: 
The solution set of a differential inclusion on a closed set of a Banach space. Appl. Math., Warsaw, 23 (1995), 13–23. 
MR 1330055 | 
Zbl 0831.34017 259. W. Sosulski: 
Compactness and upper semicontinuity of solution set of functional-differential equations of hyperbolic type. Comment. Math. Prace Mat., 25 (1985), 359–362. 
MR 0844652 | 
Zbl 0614.35061 260. J. S. Spraker, D. C. Biles: 
A comparison of the Carathéodory and Filippov solution sets. J. Math. Anal. Appl., 198 (1996), 571–580. 
MR 1376281 261. V. Staicu: 
Continuous selections of solution sets to evolution equations. Proc. Amer. Math. Soc., 113 (1991), 403–413. 
MR 1076580 | 
Zbl 0737.34011 262. V. Staicu: 
On the solution sets to nonconvex differential inclusions of evolution type. Discrete Contin. Dynam. Systems, 2 (1998), 244–252. 
MR 1722473 263. V. Staicu, H. Wu: 
Arcwise connectedness of solution sets to Lipschitzean differential inclusions. Boll. Un. Mat. Ital. A (7), 5 (1991), 253–256. 
MR 1120387 | 
Zbl 0742.34018 264. S. Szufla: 
Solutions sets of non-linear integral equations. Funkcial. Ekvac., 17 (1974), 67–71. 
MR 0344827 265. S. Szufla: 
On the structure of solution sets of nonlinear equations. Differential Equations and Optimal Control (Kalsk, 1988), Higher College Engrg., Zielona Góra, 1989,    33–39. 
MR 1067550 266. A. A. Tolstonogov: 
On the density and “being boundary” for the solution set of a differential inclusion in a Banach space. Dokl. Akad. Nauk SSSR, 261 (1981), 293–296. 
MR 0638919 267. A. A. Tolstonogov: 
The solution set of a differential inclusion in a Banach space. II. Sibirsk. Mat. Zh., 25 (1984), 159–173. 
MR 0732775 268. A. A. Tolstonogov, P. I. Chugunov: 
The solution set of a differential inclusion in a Banach space. I. Sibirsk. Mat. Zh., 24 (1983), 144–159. 
MR 0731051 269. G. M. Troianiello: 
Structure of the solution set for a class of nonlinear parabolic problems. Nonlinear Parabolic Equations: Qualitative Properties of Solutions (Rome, 1985), Longman Sci. Tech., Harlow, 1987, 219–225. 
MR 0901112 270. H. D. Tuan: 
On the continuous dependence on parameter of the solution set of differential inclusions. Z. Anal. Anwendungen, 11 (1992), 215–220. 
MR 1265929 | 
Zbl 0783.34010 271. Ya. I. Umanskiĭ: 
On a property of the solution set of differential inclusions in a Banach space. Differentsial’nye Uravneniya, 28 (1992), 1346–1351, 1468. 
MR 1203847 272. V. Veliov: 
Convergence of the solution set of singularly perturbed differential inclusions. Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal., 30 (1997), 5505–5514. 
MR 1726055 273. Z. H. Wang: 
Existence of solutions for parabolic type evolution differential inclusions and the property of the solution set. Appl. Math. Mech., 20 (1999), 314–318. 
MR 1704410 274. Z. K. Wei: 
On the existence of unbounded connected branches of solution sets of a class of semilinear operator equations. Bull. Soc. Math. Belg. Sér. B, 38 (1986), 14–30. 
MR 0871300 275. Q. J. Zhu: 
On the solution set of differential inclusions in a Banach space. J. Differ. Equ., 93 (1991), 213–237. 
MR 1125218 276. V. G. Zvyagin: 
The structure of the solution set of a nonlinear elliptic boundary value problem under fixed boundary conditions. Topological and Geometric Methods of Analysis, Voronezh. Gos. Univ., Voronezh, 1989, 152–158, 173. (in Russian) 
MR 1047679