Article
Keywords:
block circulant matrix; Moore-Penrose inverse; Drazin inverse; weighted Moore-Penrose inverse; quaternionic matrix
Summary:
Let $ A_1, A_2,\cdots , A_n $ be complex matrices of the same size. We show in this note that the Moore-Penrose inverse, the Drazin inverse and the weighted Moore-Penrose inverse of the sum $ \sum _{t=1}^{n} A_t$ can all be determined by the block circulant matrix generated by $ A_1, A_2, \cdots , A_n$. In addition, some equalities are also presented for the Moore-Penrose inverse and the Drazin inverse of a quaternionic matrix.
References:
[1] Bell C. L.:
Generalized inverses of circulant and generalized circulant matrices. Linear Algebra Appl. 39 (1981), 133–142.
MR 0625244 |
Zbl 0465.15003
[2] Ben-Israel A., Greville T. N. E.:
Generalized Inverses: Theory and Applications. R. E. Krieger Publishing Company, New York, 1980.
MR 0587113 |
Zbl 0451.15004
[5] Smith R. L.:
Moore-Penrose inverses of block circulant and block $k$-circulant matrices. Linear Algebra Appl. 16 (1979), 237–245.
MR 0469933
[6] Tian Y.:
The Moore-Penrose inverses of $ m \times n $ block matrices and their applications. Linear Algebra Appl. 283 (1998), 35–60.
MR 1657194 |
Zbl 0932.15004
[7] Tian Y.:
Universal similarity factorization equalities over real Clifford algebras. Adv. Appl. Clifford Algebras 8 (1998), 365–402.
MR 1698292 |
Zbl 0926.15026