Previous |  Up |  Next

Article

Keywords:
block circulant matrix; Moore-Penrose inverse; Drazin inverse; weighted Moore-Penrose inverse; quaternionic matrix
Summary:
Let $ A_1, A_2,\cdots , A_n $ be complex matrices of the same size. We show in this note that the Moore-Penrose inverse, the Drazin inverse and the weighted Moore-Penrose inverse of the sum $ \sum _{t=1}^{n} A_t$ can all be determined by the block circulant matrix generated by $ A_1, A_2, \cdots , A_n$. In addition, some equalities are also presented for the Moore-Penrose inverse and the Drazin inverse of a quaternionic matrix.
References:
[1] Bell C. L.: Generalized inverses of circulant and generalized circulant matrices. Linear Algebra Appl. 39 (1981), 133–142. MR 0625244 | Zbl 0465.15003
[2] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications. R. E. Krieger Publishing Company, New York, 1980. MR 0587113 | Zbl 0451.15004
[3] Davis P. J.: Circulant Matrices. Wiley, New York, 1979. MR 0543191 | Zbl 0418.15017
[4] Searle S. R.: On inverting circulant matrices. Linear Algebra Appl. 25 (1979), 77–89. MR 0528714 | Zbl 0397.15004
[5] Smith R. L.: Moore-Penrose inverses of block circulant and block $k$-circulant matrices. Linear Algebra Appl. 16 (1979), 237–245. MR 0469933
[6] Tian Y.: The Moore-Penrose inverses of $ m \times n $ block matrices and their applications. Linear Algebra Appl. 283 (1998), 35–60. MR 1657194 | Zbl 0932.15004
[7] Tian Y.: Universal similarity factorization equalities over real Clifford algebras. Adv. Appl. Clifford Algebras 8 (1998), 365–402. MR 1698292 | Zbl 0926.15026
Partner of
EuDML logo