Previous |  Up |  Next

Article

Title: A note on the Cauchy problem for first order linear differential equations with a deviating argument (English)
Author: Hakl, Robert
Author: Lomtatidze, Alexander
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 1
Year: 2002
Pages: 61-71
Summary lang: English
.
Category: math
.
Summary: Conditions for the existence and uniqueness of a solution of the Cauchy problem \[ u^{\prime }(t)=p(t)u(\tau (t))+q(t)\,,\qquad u(a)=c\,, \] established in [2], are formulated more precisely and refined for the special case, where the function $\tau $ maps the interval $]a,b[$ into some subinterval $[\tau _0,\tau _1]\subseteq [a,b]$, which can be degenerated to a point. (English)
Keyword: first order equation
Keyword: differential equation with deviating arguments
Keyword: initial value problems
MSC: 34K06
idZBL: Zbl 1087.34043
idMR: MR1899569
.
Date available: 2008-06-06T22:29:53Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107820
.
Reference: [1] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations.Mem. Differential Equations Math. Phys. 20 (2000), 133–135. Zbl 0968.34049, MR 1789344
Reference: [2] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Czechoslovak Math. J., to appear. Zbl 1023.34055, MR 1923257
Reference: [3] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Math. Bohem., to appear. Zbl 1017.34065, MR 1942637
Reference: [4] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations.Czechoslovak Math. J. 47 (1997), No. 2, 341–373. Zbl 0930.34047, MR 1452425
.

Files

Files Size Format View
ArchMathRetro_038-2002-1_7.pdf 321.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo