Previous |  Up |  Next

Article

Title: Ricci curvature of real hypersurfaces in complex hyperbolic space (English)
Author: Chen, Bang-Yen
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 1
Year: 2002
Pages: 73-80
Summary lang: English
.
Category: math
.
Summary: First we prove a general algebraic lemma. By applying the algebraic lemma we establish a general inequality involving the Ricci curvature of an arbitrary real hypersurface in a complex hyperbolic space. We also classify real hypersurfaces with constant principal curvatures which satisfy the equality case of the inequality. (English)
Keyword: Ricci curvature
Keyword: shape operator
Keyword: real hypersurface
Keyword: algebraic lemma
Keyword: tubular hypersurface
Keyword: horosphere
Keyword: complex hyperbolic space
MSC: 53B25
MSC: 53C40
MSC: 53C42
idZBL: Zbl 1087.53052
idMR: MR1899570
.
Date available: 2008-06-06T22:29:56Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107821
.
Reference: [1] Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space.J. Reine Angew. Math. 395 (1989), 132-141. Zbl 0655.53046, MR 0983062
Reference: [2] Chen, B. Y.: Geometry of Submanifolds.M. Dekker, New York, 1973. MR 0353212
Reference: [3] Chen, B. Y.: Some pinching and classification theorems for minimal submanifolds.Arch. Math. (Basel) 60 (1993), 568–578. Zbl 0811.53060, MR 1216703
Reference: [4] Chen, B. Y.: A general inequality for submanifolds in complex-space-forms and its applications.Arch. Math. (Basel) 67 (1996), 519–528. Zbl 0871.53043, MR 1418914
Reference: [5] Chen, B. Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension.Glasgow Math. J. 41 (1999), 33-41. MR 1689730
Reference: [6] De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L.: The normal curvature of totally real submanifolds of $S^6(1)$.Glasgow Math. J. 40 (1998), 199–204. MR 1630238
Reference: [7] De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L.: A pointwise inequality in submanifold theory.Arch. Math. (Brno) 35 (1999), 115–128. MR 1711669
.

Files

Files Size Format View
ArchMathRetro_038-2002-1_8.pdf 355.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo