Previous |  Up |  Next

Article

Title: On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$ (English)
Author: Staněk, Svatoslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 2
Year: 2002
Pages: 129-148
Summary lang: English
.
Category: math
.
Summary: We consider boundary value problems for second order differential equations of the form $(x^{\prime }+g(t,x,x^{\prime }))^{\prime }=f(t,x,x^{\prime })$ with the boundary conditions $r(x(0),x^{\prime }(0),x(T)) + \varphi (x)=0$, $w(x(0),x(T),x^{\prime }(T))+ \psi (x)=0$, where $g,r,w$ are continuous functions, $f$ satisfies the local Carathéodory conditions and $\varphi , \psi $ are continuous and nondecreasing functionals. Existence results are proved by the method of lower and upper functions and applying the degree theory for $\alpha $-condensing operators. (English)
Keyword: nonlinear boundary value problem
Keyword: existence
Keyword: lower and upper functions
Keyword: $\alpha $-condensing operator
Keyword: Borsuk antipodal theorem
Keyword: Leray-Schauder degree
Keyword: homotopy
MSC: 34B15
MSC: 47N20
idZBL: Zbl 1087.34007
idMR: MR1909594
.
Date available: 2008-06-06T22:30:11Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107827
.
Reference: [1] Cabada A., Pouso R. L.: Existence results for the problem $(\Phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime })$ with nonlinear boundary conditions.Nonlinear Anal. 35 (1999), 221–231. MR 1643240
Reference: [2] Deimling K.: Nonlinear Functional Analysis.Springer-Verlag, Berlin Heidelberg, 1985. Zbl 0559.47040, MR 0787404
Reference: [3] Kiguradze I. T.: Boundary Value Problems for Systems of Ordinary Differential Equations.In “Current Problems in Mathematics: Newest Results", Vol. 30, 3–103, Moscow 1987 (in Russian); English transl.: J. Soviet Math. 43 (1988), 2340–2417. Zbl 0782.34025, MR 0925829
Reference: [4] Kiguradze I. T., Lezhava N. R.: Some nonlinear two-point boundary value problems.Differentsial’nyie Uravneniya 10 (1974), 2147–2161 (in Russian); English transl.: Differ. Equations 10 (1974), 1660–1671. MR 0364733
Reference: [5] Kiguradze I. T., Lezhava N. R.: On a nonlinear boundary value problem.Funct. theor. Methods in Differ. Equat., Pitman Publ. London 1976, 259–276. Zbl 0346.34008, MR 0499409
Reference: [6] Staněk S.: Two-point functional boundary value problems without growth restrictions.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 37 (1998), 123–142. Zbl 0963.34061, MR 1690481
Reference: [7] Thompson H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions.Pacific. J. Math. 172 (1996), 255–277. Zbl 0862.34015, MR 1379297
Reference: [8] Thompson H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions II.Pacific. J. Math. 172 (1996), 279–297. Zbl 0862.34015, MR 1379297
Reference: [9] Wang M. X., Cabada A., Nieto J. J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions.Ann. Polon. Math. 58 (1993), 221–235. Zbl 0789.34027, MR 1244394
.

Files

Files Size Format View
ArchMathRetro_038-2002-2_5.pdf 396.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo