Previous |  Up |  Next

Article

Title: Quantum Euler-Poisson systems: Existence of stationary states (English)
Author: Jüngel, Ansgar
Author: Li, Hailiang
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 4
Year: 2004
Pages: 435-456
Summary lang: English
.
Category: math
.
Summary: A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables. (English)
Keyword: quantum hydrodynamics
Keyword: existence and uniqueness of solutions
Keyword: non-monotone pressure
Keyword: semiconductors
MSC: 35Q55
MSC: 35Q60
MSC: 76Y05
MSC: 82C10
MSC: 82D37
idZBL: Zbl 1122.35140
idMR: MR2129964
.
Date available: 2008-06-06T22:44:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107926
.
Reference: [1] Brezzi F., Gasser I., Markowich P., Schmeiser C.: Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension.Appl. Math. Lett. 8 (1995), 47–52. MR 1355150
Reference: [2] Chen G., Wang D.: Convergence of shock schemes for the compressible Euler-Poisson equations.Comm. Math. Phys. 179 (1996), 333–364. MR 1400743
Reference: [3] Courant R., Friedrichs K. O.: Supersonic flow and shock waves.Springer-Verlag, New York 1976. MR 0421279
Reference: [4] Degond P., Markowich P. A.: On a one-dimensional steady-state hydrodynamic model.Appl. Math. Lett. 3 (1990), 25–29. MR 1077867
Reference: [5] Degond P., Markowich P. A.: A steady state potential flow model for semiconductors.Ann. Mat. Pura Appl. 165 (1993), 87–98. MR 1271412
Reference: [6] Gamba I.: Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor.Comm. Partial Differential Equations 17 (1992), 553–577. MR 1163436
Reference: [7] Gamba I., Jüngel A.: Asymptotic limits in quantum trajectory models.Comm. Partial Differential Equations 27 (2002), 669–691. MR 1900558
Reference: [8] Gamba I., Jüngel A.: Positive solutions to singular second and third order differential equations for quantum fluids.Arch. Rational Mech. Anal. 156 (2001), 183–203. MR 1816474
Reference: [9] Gamba I., Morawitz C.: A viscous approximation for a 2D steady semiconductor or transonic gas dynamics flow: existence theorem for potential flow.Comm. Pure Appl. Math. 49 (1996), 999–1049. MR 1404324
Reference: [10] Gardner C.: Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device.IEEE Trans. El. Dev. 38 (1991), 392–398.
Reference: [11] Gardner C.: The quantum hydrodynamic model for semiconductors devices.SIAM J. Appl. Math. 54 (1994), 409–427. MR 1265234
Reference: [12] Gasser I., Jüngel A.: The quantum hydrodynamic model for semiconductors in thermal equilibrium.Z. Angew. Math. Phys. 48 (1997), 45–59. MR 1439735
Reference: [13] Gasser I., Lin C.-K., Markowich P.: A review of dispersive limits of the (non)linear Schrödinger-type equation.Taiwanese J. of Math. 4, (2000), 501–529. MR 1799752
Reference: [14] Gasser I., Markowich P.: Quantum hydrodynamics, Wigner transforms and the classical limit.Asymptot. Anal. 14 (1997), 97–116. Zbl 0877.76087, MR 1451208
Reference: [15] Gasser I., Markowich P. A., Ringhofer C.: Closure conditions for classical and quantum moment hierarchies in the small temperature limit.Transport Theory Statistic Phys. 25 (1996), 409–423. Zbl 0871.76078, MR 1407543
Reference: [16] Gyi M. T., Jüngel A.: A quantum regularization of the one-dimensional hydrodynamic model for semiconductors.Adv. Differential Equations 5 (2000), 773–800. Zbl 1174.82348, MR 1750118
Reference: [17] Hsiao L., Yang T.: Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors.J. Differential Equations 170 (2001), 472–493. MR 1815191
Reference: [18] Jerome J.: Analysis of charge transport: a mathematical study of semiconductor devices.Springer-Verlag, Heidelberg 1996. MR 1437143
Reference: [19] Jüngel A.: A steady-state potential flow Euler-Poisson system for charged quantum fluids.Comm. Math. Phys. 194 (1998), 463–479. MR 1627673
Reference: [20] Jüngel A.: Quasi-hydrodynamic semiconductor equations.Progress in Nonlinear Differential Equations, Birkhäuser, Basel 2001. Zbl 0969.35001, MR 1818867
Reference: [21] Jüngel A., Mariani M. C., Rial D.: Local existence of solutions to the transient quantum hydrodynamic equations.Math. Models Methods Appl. Sci. 12 (2002), 485–495. Zbl 1215.81031, MR 1899838
Reference: [22] Jüngel A., Li H.-L.: Quantum Euler-Poisson systems: global existence and exponential decay.to appear in Quart. Appl. Math. 2005. Zbl 1069.35012, MR 2086047
Reference: [23] Landau L. D., Lifshitz E. M.: Quantum mechanics: non-relativistic theory.New York, Pergamon Press 1977. MR 0400931
Reference: [24] Li H.-L., Markowich P. A.: A review of hydrodynamical models for semiconductors: asymptotic behavior.Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), 321-342. Zbl 0996.82064, MR 1894562
Reference: [25] Loffredo M., Morato L.: On the creation of quantum vortex lines in rotating HeII.Il nouvo cimento 108B (1993), 205–215.
Reference: [26] Madelung E.: Quantentheorie in hydrodynamischer Form.Z. Phys. 40 (1927), 322.
Reference: [27] Marcati P., Natalini R.: Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation.Arch. Rational Mech. Anal. 129 (1995), 129–145. Zbl 0829.35128, MR 1328473
Reference: [28] Markowich P., Ringhofer C., Schmeiser C.: Semiconductor Equations.Springer, Wien 1990. Zbl 0765.35001, MR 1063852
Reference: [29] Pacard F., Unterreiter A.: A variational analysis of the thermal equilibrium state of charged quantum fluids.Comm. Partial Differential Equations 20 (1995), 885–900. Zbl 0820.35112, MR 1326910
Reference: [30] Shu C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws.ICASE Report No. 97-65, NASA Langley Research Center, Hampton, USA 1997. MR 1728856
Reference: [31] Zhang B., Jerome W.: On a steady-state quantum hydrodynamic model for semiconductors.Nonlinear Anal., Theory Methods Appl. 26 (1996), 845–856. Zbl 0882.76105, MR 1362757
.

Files

Files Size Format View
ArchMathRetro_040-2004-4_11.pdf 298.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo