Previous |  Up |  Next

Article

Title: Oscillatory properties of fourth order self-adjoint differential equations (English)
Author: Fišnarová, Simona
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 4
Year: 2004
Pages: 457-469
Summary lang: English
.
Category: math
.
Summary: Oscillation and nonoscillation criteria for the self-adjoint linear differential equation \[ (t^\alpha y^{\prime \prime })^{\prime \prime }-\frac{\gamma _{2,\alpha }}{t^{4-\alpha }}y=q(t)y,\quad \alpha \notin \lbrace 1, 3\rbrace \,, \] where \[ \gamma _{2,\alpha }=\frac{(\alpha -1)^2(\alpha -3)^2}{16}\] and $q$ is a real and continuous function, are established. It is proved, using these criteria, that the equation \[\left(t^\alpha y^{\prime \prime }\right)^{\prime \prime }-\left(\frac{\gamma _{2,\alpha }}{t^{4-\alpha }} + \frac{\gamma }{t^{4-\alpha }\ln ^2 t}\right)y = 0\] is nonoscillatory if and only if $\gamma \le \frac{\alpha ^2-4\alpha +5}{8}$. (English)
Keyword: self-adjoint differential equation
Keyword: oscillation and nonoscillation criteria
Keyword: variational method
Keyword: conditional oscillation.
MSC: 34C10
idZBL: Zbl 1117.34038
idMR: MR2129965
.
Date available: 2008-06-06T22:44:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107927
.
Reference: [1] Coppel W. A.: Disconjugacy.Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. Zbl 0224.34003, MR 0460785
Reference: [2] Došlý O.: Nehari-type oscillation criteria for self-adjoint linear equations.J. Math. Anal. Appl. 182 (1994), 69–89. MR 1265883
Reference: [3] Došlý O.: Oscillatory properties of fourth order Sturm-Liouville differential equations.Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 41 (2002), 49–59. Zbl 1055.34065, MR 1967340
Reference: [4] Došlý O., Osička J.: Oscillation and nonoscillation of higher order self-adjoint differential equations.Czechoslovak Math. J. 52 (127) (2002), 833-849. MR 1940063
Reference: [5] Došlý O., Osička J.: Oscillatory properties of higher order Sturm-Liouville differential equations.Studies Univ. Žilina, Math. Ser. 15 (2002), 25–40. Zbl 1062.34034, MR 1980760
Reference: [6] Glazman I. M.: Direct Methods of Qualitative Anylysis of Singular Differential Operators.Davey, Jerusalem 1965.
Reference: [7] Hinton D. B., Lewis R. T.: Discrete spectra criteria for singular differential operators with middle terms.Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. Zbl 0298.34018, MR 0367358
.

Files

Files Size Format View
ArchMathRetro_040-2004-4_12.pdf 250.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo