Previous |  Up |  Next

Article

Title: Countably thick modules (English)
Author: Abdel-Mohsen, Ali
Author: Saleh, Mohammad
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 4
Year: 2005
Pages: 349-358
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes ${\mathcal M}$ of modules in $ \sigma [M]$ we study when direct sums of modules from ${\mathcal M}$ satisfies a property $\mathbb P$ in $\sigma [M]$. In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules. (English)
Keyword: tight
Keyword: weakly tight
Keyword: weakly injective
Keyword: countably thick
Keyword: locally q.f.d.
Keyword: weakly semisimple
MSC: 16D50
MSC: 16D60
MSC: 16D70
MSC: 16D90
idZBL: Zbl 1114.16003
idMR: MR2195489
.
Date available: 2008-06-06T22:46:31Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107965
.
Reference: [1] Albu T., Nastasescu C.: Relative finiteness in module theory.Marcel Dekker 1984. Zbl 0556.16001, MR 0749933
Reference: [2] Al-Huzali A., Jain S. K., López-Permouth S. R.: Rings whose cyclics have finite Goldie dimension.J. Algebra 153 (1992), 37–40. MR 1195405
Reference: [3] Berry D.: Modules whose cyclic submodules have finite dimension.Canad. Math. Bull. 19 (1976), 1–6. Zbl 0335.16025, MR 0417244
Reference: [4] Brodskii G., Saleh M., Thuyet L., Wisbauer R.: On weak injectivity of direct sums of modules.Vietnam J. Math. 26 (1998), 121–127. MR 1684323
Reference: [5] Brodskii G.: Denumerable distributivity, linear compactness and the AB5$^{\ast }$ condition in modules.Russian Acad. Sci. Dokl. Math. 53 (1996), 76–77.
Reference: [6] Brodskii G.: The Grothendieck condition AB5$^{\ast }$ and generalizations of module distributivity.Russ. Math. 41 (1997), 1–11. MR 1480764
Reference: [7] Camillo V. P.: Modules whose quotients have finite Goldie dimension.Pacific J. Math. 69 (1977), 337–338. Zbl 0356.13003, MR 0442020
Reference: [8] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R.: Extending modules.Pitman, London, 1994. Zbl 0841.16001
Reference: [9] Dhompong S., Sanwong J., Plubtieng S., Tansee H.: On modules whose singular subgenerated modules are weakly injective.Algebra Colloq. 8 (2001), 227–236. MR 1838519
Reference: [10] Goel V. K., Jain S. K.: $\pi $-injective modules and rings whose cyclic modules are $\pi $-injective.Comm. Algebra 6 (1978), 59–73. MR 0491819
Reference: [11] Golan J. S., López-Permouth S. R.: QI-filters and tight modules.Comm. Algebra 19 (1991), 2217–2229. MR 1123120
Reference: [12] Jain S. K., López-Permouth S. R.: Rings whose cyclics are essentially embeddable in projective modules.J. Algebra 128 (1990), 257–269. MR 1031920
Reference: [13] Jain S. K. López-Permouth S. R., Risvi T.: A characterization of uniserial rings via continuous and discrete modules.J. Austral. Math. Soc., Ser. A 50 (1991), 197–203. MR 1094917
Reference: [14] Jain S. K., López-Permouth S. R., Saleh M.: On weakly projective modules.In: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, 200–208. MR 1344231
Reference: [15] Jain S. K., López-Permouth S. R., Oshiro K., Saleh M.: Weakly projective and weakly injective modules.Canad. J. Math. 34 (1994), 972–981. MR 1295126
Reference: [16] Jain S. K., López-Permouth S. R., Singh S.: On a class of QI-rings.Glasgow J. Math. 34 (1992), 75–81. MR 1145633
Reference: [17] Jain S. K., López-Permouth S. R.: A survey on the theory of weakly injective modules.In: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, 205–233. MR 1245954
Reference: [18] Kurshan A. P.: Rings whose cyclic modules have finitely generated socle.J. Algebra 14 (1970), 376–386. Zbl 0199.35503, MR 0260780
Reference: [19] López-Permouth S. R.: Rings characterized by their weakly injective modules.Glasgow Math. J. 34 (1992), 349–353. MR 1181777
Reference: [20] Malik S., Vanaja N.: Weak relative injective M-subgenerated modules.Advances in Ring Theory, Birkhauser, 1997, 221–239. Zbl 0934.16002, MR 1602677
Reference: [21] Mohamed S., Muller B., Singh S.: Quasi-dual continuous modules.J. Austral. Math. Soc., Ser. A 39 (1985), 287–299. MR 0802719
Reference: [22] Mohamed S., Muller B.: Continuous and discrete modules.Cambridge University Press 1990. MR 1084376
Reference: [23] Saleh M.: A note on tightness.Glasgow Math. J. $\mathbf{41}$ (1999), 43–44. Zbl 0923.16003, MR 1689655
Reference: [24] Saleh M., Abdel-Mohsen A.: On weak injectivity and weak projectivity.In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207. Zbl 0985.16002, MR 1773029
Reference: [25] Saleh M., Abdel-Mohsen A.: A note on weak injectivity.Far East Journal of Mathematical Sciences (FJMS) 11 (2003), 199-20-6. Zbl 1063.16004, MR 2020502
Reference: [26] Saleh M.: On q.f.d. modules and q.f.d. rings.Houston J. Math. 30 (2004), 629–636. Zbl 1070.16002, MR 2083867
Reference: [27] Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S.: On quasi-principally injective modules.Algebra Colloq. 6 (1999), 296–276. Zbl 0949.16003, MR 1809646
Reference: [28] Sanh N. V., Dhompongsa S., Wongwai S.: On generalized q.f.d. modules and rings.Algebra and Combinatorics, Springer-Verlag, 1999, 367–272. MR 1733193
Reference: [29] Wisbauer R.: Foundations of module and ring theory.Gordon and Breach, 1991. Zbl 0746.16001, MR 1144522
Reference: [30] Zhou Y.: Notes on weakly semisimple rings.Bull. Austral. Math. Soc. 52 (1996), 517–525. MR 1358705
Reference: [31] Zhou Y.: Weak injectivity and module classes.Comm. Algebra $\mathbf{25}$ (1997), 2395–2407. Zbl 0934.16004, MR 1459568
.

Files

Files Size Format View
ArchMathRetro_041-2005-4_1.pdf 227.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo