[2] Al-Huzali A., Jain S. K., López-Permouth S. R.: 
Rings whose cyclics have finite Goldie dimension. J. Algebra 153 (1992), 37–40.  
MR 1195405[3] Berry D.: 
Modules whose cyclic submodules have finite dimension. Canad. Math. Bull. 19 (1976), 1–6.  
MR 0417244 | 
Zbl 0335.16025[4] Brodskii G., Saleh M., Thuyet L., Wisbauer R.: 
On weak injectivity of direct sums of modules. Vietnam J. Math. 26 (1998), 121–127.  
MR 1684323[5] Brodskii G.: Denumerable distributivity, linear compactness and the AB5$^{\ast }$  condition in modules. Russian Acad. Sci. Dokl. Math. 53 (1996), 76–77. 
[6] Brodskii G.: 
The Grothendieck condition AB5$^{\ast }$ and generalizations of module distributivity. Russ. Math. 41 (1997), 1–11.  
MR 1480764[7] Camillo V. P.: 
Modules whose quotients have finite Goldie dimension. Pacific J. Math. 69 (1977), 337–338.  
MR 0442020 | 
Zbl 0356.13003[8] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R.: 
Extending modules. Pitman, London, 1994.  
Zbl 0841.16001[9] Dhompong S., Sanwong J., Plubtieng S., Tansee H.: 
On modules whose singular subgenerated modules are weakly injective. Algebra Colloq. 8 (2001), 227–236.  
MR 1838519[10] Goel V. K., Jain S. K.: 
$\pi $-injective modules and rings whose cyclic modules are $\pi $-injective. Comm. Algebra 6 (1978), 59–73.  
MR 0491819[11] Golan J. S., López-Permouth S. R.: 
QI-filters and tight modules. Comm. Algebra 19 (1991), 2217–2229.  
MR 1123120[12] Jain S. K., López-Permouth S. R.: 
Rings whose cyclics are essentially embeddable in projective modules. J. Algebra 128 (1990), 257–269.  
MR 1031920[13] Jain S. K. López-Permouth S. R., Risvi T.: 
A characterization of uniserial rings via continuous and discrete modules. J. Austral. Math. Soc., Ser. A 50 (1991), 197–203.  
MR 1094917[14] Jain S.  K., López-Permouth S. R., Saleh M.: 
On weakly projective modules. In: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, 200–208.  
MR 1344231[15] Jain S.  K., López-Permouth S. R., Oshiro K., Saleh M.: 
Weakly projective and weakly injective modules. Canad. J. Math. 34 (1994), 972–981.  
MR 1295126[16] Jain S.  K., López-Permouth S. R., Singh S.: 
On a class of QI-rings. Glasgow J. Math. 34 (1992), 75–81.  
MR 1145633[17] Jain S.  K., López-Permouth S. R.: 
A survey on the theory of weakly injective modules. In: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, 205–233.  
MR 1245954[18] Kurshan A. P.: 
Rings whose cyclic modules have finitely generated socle. J. Algebra 14 (1970), 376–386.  
MR 0260780 | 
Zbl 0199.35503[19] López-Permouth S. R.: 
Rings characterized by their weakly injective modules. Glasgow Math. J. 34 (1992), 349–353.  
MR 1181777[20] Malik S., Vanaja N.: 
Weak relative injective M-subgenerated modules. Advances in Ring Theory, Birkhauser, 1997, 221–239.  
MR 1602677 | 
Zbl 0934.16002[21] Mohamed S., Muller B., Singh S.: 
Quasi-dual continuous modules. J. Austral. Math. Soc., Ser. A 39 (1985), 287–299.  
MR 0802719[22] Mohamed S., Muller B.: 
Continuous and discrete modules. Cambridge University Press 1990.  
MR 1084376[24] Saleh M., Abdel-Mohsen A.: 
On weak injectivity and weak projectivity. In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207.  
MR 1773029 | 
Zbl 0985.16002[25] Saleh M., Abdel-Mohsen A.: 
A note on weak injectivity. Far East Journal of Mathematical Sciences (FJMS) 11 (2003), 199-20-6.  
MR 2020502 | 
Zbl 1063.16004[27] Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S.: 
On quasi-principally injective modules. Algebra Colloq. 6 (1999), 296–276.  
MR 1809646 | 
Zbl 0949.16003[28] Sanh N. V., Dhompongsa S., Wongwai S.: 
On generalized q.f.d. modules and rings. Algebra and Combinatorics, Springer-Verlag, 1999, 367–272.  
MR 1733193[30] Zhou Y.: 
Notes on weakly semisimple rings. Bull. Austral. Math. Soc. 52 (1996), 517–525.  
MR 1358705[31] Zhou Y.: 
Weak injectivity and module classes. Comm. Algebra $\mathbf{25}$ (1997), 2395–2407.   
MR 1459568 | 
Zbl 0934.16004