Previous |  Up |  Next

Article

Title: Best approximation for nonconvex set in $q$-normed space (English)
Author: Nashine, Hemant Kumar
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 51-58
Summary lang: English
.
Category: math
.
Summary: Some existence results on best approximation are proved without starshaped subset and affine mapping in the set up of $q$-normed space. First, we consider the closed subset and then weakly compact subsets for said purpose. Our results improve the result of Mukherjee and Som (Mukherjee, R. N., Som, T., A note on an application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(3) (1985), 243–244.) and Jungck and Sessa (Jungck, G., Sessa, S., Fixed point theorems in best approximation theory, Math. Japonica 42(2) (1995), 249–252.) and some known results (Dotson,W. G., Jr., On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38(1) (1973), 155–156.), (Latif, A., A result on best approximation in p-normed spaces, Arch. Math. (Brno) 37 (2001), 71–75.), (Nashine,H. K., Common fixed point for best approximation for semi-convex structure, Bull. Kerala Math. Assoc. (communicated).) are obtained as consequence. To achieve our goal, we have introduced a property known as “Property(A)”. (English)
Keyword: Best approximation
Keyword: demiclosed mapping
Keyword: fixed point
Keyword: $I$-nonexpansive mapping
Keyword: $q$-normed space
MSC: 41A50
MSC: 41A65
MSC: 46B20
MSC: 47H10
MSC: 54H25
idZBL: Zbl 1164.41347
idMR: MR2227112
.
Date available: 2008-06-06T22:47:18Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107981
.
Reference: [1] Brosowski B.: Fixpunktsatze in der Approximationstheorie.Mathematica (Cluj) 11 (1969), 165–220. MR 0277979
Reference: [2] Carbone A.: Some results on invariant approximation.Internat. J. Math. Math. Soc. 17(3) (1994), 483–488. Zbl 0813.47067, MR 1277733
Reference: [3] Dotson W. G.: Fixed point theorems for nonexpasive mappings on starshaped subsets of Banach space.J. London Math. Soc. 4(2) (1972), 408–410. MR 0296778
Reference: [4] Dotson W. G., Jr.: On fixed point of nonexpansive mappings in nonconvex sets.Proc. Amer. Math. Soc. 38(1) (1973), 155–156. MR 0313894
Reference: [5] Hicks T. L., Humpheries M. D.: A note on fixed point theorems.J. Approx. Theory 34 (1982), 221–225. MR 0654288
Reference: [6] Jungck G.: An iff fixed point criterion.Math. Mag. 49(1) (1976), 32–34. Zbl 0314.54054, MR 0433425
Reference: [7] Jungck G., Sessa S.: Fixed point theorems in best approximation theory.Math. Japonica 42(2) (1995), 249–252. Zbl 0834.54026, MR 1356383
Reference: [8] Köthe G.: Topological vector spaces I.Springer-Verlag, Berlin 1969. MR 0248498
Reference: [9] Latif A.: A result on best approximation in p-normed spaces.Arch. Math. (Brno) 37 (2001), 71–75. Zbl 1068.41055, MR 1822766
Reference: [10] Meinardus G.: Invarianze bei linearen Approximationen.Arch. Rational Mech. Anal. 14 (1963), 301–303. MR 0156143
Reference: [11] Mukherjee R. N., Som T.: A note on an application of a fixed point theorem in approximation theory.Indian J. Pure Appl. Math. 16(3) (1985), 243–244. Zbl 0606.41048, MR 0785288
Reference: [12] Nashine H. K.: Common fixed point for best approximation for semi-convex structure.Bull. Kerala Math. Assoc. (communicated).
Reference: [13] Park S.: Fixed points of f-contractive maps.Rocky Mountain J. Math. 8(4) (1978), 743–750. Zbl 0398.54030, MR 0513947
Reference: [14] Sahab S. A., Khan M. S., Sessa S.: A result in best approximation theory.J. Approx. Theory 55 (1988), 349–351. Zbl 0676.41031, MR 0968941
Reference: [15] Singh S. P.: An application of a fixed point theorem to approximation theory.J. Approx. Theory 25 (1979), 89–90. Zbl 0399.41032, MR 0526280
Reference: [16] Singh S. P.: Application of fixed point theorems to approximation theory.in: V. Lakshmikantam (Ed.), Applied Nonlinear Analysis, Academic Press, New York 1979. MR 0537550
Reference: [17] Singh S. P.: Some results on best approximation in locally convex spaces.J. Approx. Theory 28 (1980), 329–332. Zbl 0444.41018, MR 0589988
Reference: [18] Singh S. P., Watson B., Srivastava P.,: Fixed point theory and best approximation: The KKM-map principle.Vol. 424, Kluwer Academic Publishers 1997. Zbl 0901.47039, MR 1483076
Reference: [19] Smoluk A.: Invariant approximations.Mat. Stos. 17 (1981), 17–22 [in Polish]. MR 0658256
Reference: [20] Subrahmanyam P. V.: An application of a fixed point theorem to best approximations.J. Approx. Theory 20 (1977), 165–172. MR 0445195
Reference: [21] Opial Z.: Weak convergence of successive approximations for nonexpansive mappings.Bull. Amer. Math. Soc. 73 (1967), 531–537. MR 0211301
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_6.pdf 198.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo