Previous |  Up |  Next

Article

Title: The natural affinors on some fiber product preserving gauge bundle functors of vector bundles (English)
Author: Kurek, Jan
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 59-67
Summary lang: English
.
Category: math
.
Summary: We classify all natural affinors on vertical fiber product preserving gauge bundle functors $F$ on vector bundles. We explain this result for some more known such $F$. We present some applications. We remark a similar classification of all natural affinors on the gauge bundle functor $F^*$ dual to $F$ as above. We study also a similar problem for some (not all) not vertical fiber product preserving gauge bundle functors on vector bundles. (English)
Keyword: gauge bundle functors
Keyword: natural operators
Keyword: natural transformations
Keyword: natural affinors
Keyword: jets
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1164.58302
idMR: MR2227113
.
Date available: 2008-06-06T22:47:21Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107982
.
Reference: [1] Doupovec, M., Kolář, I.: Natural affinors on time-dependent Weil bundles.Arch. Math. (Brno) 27 (1991), 205–209. MR 1189217
Reference: [2] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles.Rend. Circ. Mat. Palermo (2) Suppl. 30 (1993), 95–100. MR 1246623
Reference: [3] Kolář, I. et al.: Natural operations in differential geometry.Springer-Verlag, Berlin 1993. MR 1202431
Reference: [4] Kolář, I., Mikulski, W. M.: Contact elements on fibered manifolds.Czechoslovak Math. J. 53(128) (2003), 1017–1030. MR 2018847
Reference: [5] Kolář, I., Modugno M.: Torsions of connections on some natural bundles.Differential Geom. Appl. 2 (1992), 1–16. MR 1244453
Reference: [6] Kurek, J.: Natural affinors on higher order cotangent bundles.Arch. Math. (Brno) 28 (1992), 175–180. MR 1222284
Reference: [7] Kurek, J., Mikulski, W. M.: Some natural operators in linear vector fields.Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 87–95. MR 2199593
Reference: [8] Mikulski, W. M.: On the fiber product preserving gauge bundle functors on vector bundles.Ann. Polon. Math. 82.3 (2003), 251–264. Zbl 1126.58300, MR 2040810
Reference: [9] Mikulski, W. M.: Natural affinors on $r$-jet prolongation of the tangent bundles.Arch. Math. (Brno) 34(2) (1998), 321–328. MR 1645340
Reference: [10] Mikulski, W. M.: Natural affinors on $(J^rT^*)^*$.Arch. Math. (Brno) 36 (2000), 261–267. Zbl 1090.58501, MR 1811170
Reference: [11] Mikulski, W. M.: The natural affinors on $\otimes ^kT^{(r)}$.Note Mat. 19(2) (1999), 269–274. MR 1816880
Reference: [12] Mikulski, W. M.: The natural affinors on generalized higher order tangent bundles.Rend. Mat. Appl. (7) 21 (2001), 339–349. Zbl 1048.58004, MR 1884952
Reference: [13] Mikulski, W. M.: Natural affinors on $(J^{r,s,q}(\cdot ,\mathbf{R}^{1,1})_0)^*$.Comment. Math. Univ. Carolin. 42(4) (2001), 655–663. Zbl 1050.58004, MR 1883375
Reference: [14] Mikulski, W. M.: The natural affinors on $(J^rT^{*,a})^*$.Acta Univ. Palack. Olomuc. Fac. Rerum Natur., Math. 40 (2001), 179–184. Zbl 1050.58004, MR 1904693
Reference: [15] Mikulski, W. M.: The natural affinors on the $r$-jet prolongations of a vector bundle.Demonstratio Math. XXXVII (3) (2004), 709–717. Zbl 1064.58003, MR 2093550
Reference: [16] Tomáš, J.: Natural operators transforming projectable vector fields to product preserving bundles.Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 181–187. MR 1692269
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_7.pdf 245.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo