[1] Arocha J. L., Bracho J., Montejano L., Oliveros D., Strausz R.: 
Separoids, their categories and a Hadwiger-type theorem. Discrete Comput. Geom. 27(3) (2002), 377–385.  
MR 1921560 | 
Zbl 1002.52008[2] Björner A., Las Vergnas M., Sturmfels B., White N., Ziegler G.: 
Oriented Matroids. Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, 1993.  
MR 1226888 | 
Zbl 0773.52001[3] Bracho J., Strausz R.: Separoids and a characterisation of linear uniform oriented matroids. KAM-DIMATIA Series, Charles University at Prague 17 2002. 
[4] Hell P., Nešetřil J.: 
On the complexity of H-coloring. J. Combin. Theory, Ser. B 48(1) (1990), 92–110. An earlier version appeared in: Combinatorics, graph theory, and computing, Proc. 17th Southeast. Conf., Boca Raton/Fl. 1986, Congr. Numerantium 55, 284 (1986).  
MR 1047555 | 
Zbl 0639.05023[5] Hell P., Nešetřil J.: 
Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications 28, Oxford University Press, 2004.  
MR 2089014[6] Hochstättler W., Nešetřil J.: 
Linear programming duality and morphisms. Comment. Math. Univ. Carolin. 40(3) (1999), 577–592.  
MR 1732478[7] Las Vergnas M.: Matroïdes orientables. C. N. R. S. Paris, 1974. 
[8] Montellano-Ballesteros J. J., Pór A., Strausz R.: 
Tverberg-type theorems for separoids. Discrete Comput. Geom. 35 (3) (2006), 513–523.  
MR 2202117 | 
Zbl 1091.52500[9] Montellano-Ballesteros J. J., Strausz R.: A characterisation of cocircuit graphs of uniform oriented matroids. KAM-DIMATIA Series, Charles University at Prague 26 (565), 2002. 
[10] Montellano-Ballesteros J. J., Strausz R.: 
Counting polytopes via the Radon complex. J. Combin. Theory Ser. A 106(1) (2004), 109–121.  
MR 2050119 | 
Zbl 1042.05024[11] Nešetřil J., Tardif C.: 
Duality theorems for finite structures (characterising gaps and good characterisations). J. Combin. Theory Ser. B 80(1) (2000), 80–97.  
MR 1778201 | 
Zbl 1024.05078[12] Pultr A., Trnková V.: 
Combinatorial, algebraic and topological representations of groups, semigroups and categories. North-Holland Mathematical Library 22, North-Holland Publishing Co., Amsterdam, 1980.  
MR 0563525[13] Radon J.: 
Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83 (1921), 113–115.  
MR 1512002[14] Strausz R.: Separoides. Situs Ser. B, Universidad Nacional Autónoma de México 5(1998), 36–41. 
[15] Strausz R.: Separoides: el complejo de Radon. Master’s thesis, Universidad Nacional Autónoma de México, 2001. 
[16] Strausz R.: On Radon’s theorem and representation of separoids. ITI Series, Charles University at Prague 32 (118), (2003). 
[17] Strausz R.: On Separoids. PhD thesis, Universidad Nacional Autónoma de México, 2004.