Previous |  Up |  Next

Article

Title: Universality of separoids (English)
Author: Nešetřil, Jaroslav
Author: Strausz, Ricardo
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 85-101
Summary lang: English
.
Category: math
.
Summary: A separoid is a symmetric relation $\dagger \subset {2^S\atopwithdelims ()2}$ defined on disjoint pairs of subsets of a given set $S$ such that it is closed as a filter in the canonical partial order induced by the inclusion (i.e., $A\dagger B\preceq A^{\prime }\dagger B^{\prime }\iff A\subseteq A^{\prime }$ and $B\subseteq B^{\prime }$). We introduce the notion of homomorphism as a map which preserve the so-called “minimal Radon partitions” and show that separoids, endowed with these maps, admits an embedding from the category of all finite graphs. This proves that separoids constitute a countable universal partial order. Furthermore, by embedding also all hypergraphs (all set systems) into such a category, we prove a “stronger” universality property. We further study some structural aspects of the category of separoids. We completely solve the density problem for (all) separoids as well as for separoids of points. We also generalise the classic Radon’s theorem in a categorical setting as well as Hedetniemi’s product conjecture (which can be proved for oriented matroids). (English)
Keyword: graphs
Keyword: separoids
Keyword: homomorphisms
Keyword: universality
Keyword: density
Keyword: Radon’s theorem
Keyword: oriented matroids
Keyword: Hedetniemi’s conjecture
MSC: 05B35
idZBL: Zbl 1164.05468
idMR: MR2227115
.
Date available: 2008-06-06T22:47:27Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107984
.
Reference: [1] Arocha J. L., Bracho J., Montejano L., Oliveros D., Strausz R.: Separoids, their categories and a Hadwiger-type theorem.Discrete Comput. Geom. 27(3) (2002), 377–385. Zbl 1002.52008, MR 1921560
Reference: [2] Björner A., Las Vergnas M., Sturmfels B., White N., Ziegler G.: Oriented Matroids.Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, 1993. Zbl 0773.52001, MR 1226888
Reference: [3] Bracho J., Strausz R.: Separoids and a characterisation of linear uniform oriented matroids.KAM-DIMATIA Series, Charles University at Prague 17 2002.
Reference: [4] Hell P., Nešetřil J.: On the complexity of H-coloring.J. Combin. Theory, Ser. B 48(1) (1990), 92–110. An earlier version appeared in: Combinatorics, graph theory, and computing, Proc. 17th Southeast. Conf., Boca Raton/Fl. 1986, Congr. Numerantium 55, 284 (1986). Zbl 0639.05023, MR 1047555
Reference: [5] Hell P., Nešetřil J.: Graphs and Homomorphisms.Oxford Lecture Series in Mathematics and its Applications 28, Oxford University Press, 2004. MR 2089014
Reference: [6] Hochstättler W., Nešetřil J.: Linear programming duality and morphisms.Comment. Math. Univ. Carolin. 40(3) (1999), 577–592. MR 1732478
Reference: [7] Las Vergnas M.: Matroïdes orientables.C. N. R. S. Paris, 1974.
Reference: [8] Montellano-Ballesteros J. J., Pór A., Strausz R.: Tverberg-type theorems for separoids.Discrete Comput. Geom. 35 (3) (2006), 513–523. Zbl 1091.52500, MR 2202117
Reference: [9] Montellano-Ballesteros J. J., Strausz R.: A characterisation of cocircuit graphs of uniform oriented matroids.KAM-DIMATIA Series, Charles University at Prague 26 (565), 2002.
Reference: [10] Montellano-Ballesteros J. J., Strausz R.: Counting polytopes via the Radon complex.J. Combin. Theory Ser. A 106(1) (2004), 109–121. Zbl 1042.05024, MR 2050119
Reference: [11] Nešetřil J., Tardif C.: Duality theorems for finite structures (characterising gaps and good characterisations).J. Combin. Theory Ser. B 80(1) (2000), 80–97. Zbl 1024.05078, MR 1778201
Reference: [12] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories.North-Holland Mathematical Library 22, North-Holland Publishing Co., Amsterdam, 1980. MR 0563525
Reference: [13] Radon J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.Math. Ann. 83 (1921), 113–115. MR 1512002
Reference: [14] Strausz R.: Separoides.Situs Ser. B, Universidad Nacional Autónoma de México 5(1998), 36–41.
Reference: [15] Strausz R.: Separoides: el complejo de Radon.Master’s thesis, Universidad Nacional Autónoma de México, 2001.
Reference: [16] Strausz R.: On Radon’s theorem and representation of separoids.ITI Series, Charles University at Prague 32 (118), (2003).
Reference: [17] Strausz R.: On Separoids.PhD thesis, Universidad Nacional Autónoma de México, 2004.
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_9.pdf 307.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo