Previous |  Up |  Next

Article

Title: Periodic solutions for differential inclusions in ${\Bbb R}^N$ (English)
Author: Filippakis, Michael E.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 115-123
Summary lang: English
.
Category: math
.
Summary: We consider first order periodic differential inclusions in $\mathbb {R}^N$. The presence of a subdifferential term incorporates in our framework differential variational inequalities in $\mathbb {R}^N$. We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems. (English)
Keyword: multifunction
Keyword: convex subdifferential
Keyword: extremal periodic solution
Keyword: Moreanu-Yosida approximation.
MSC: 34A60
MSC: 34C25
idZBL: Zbl 1164.34320
idMR: MR2240188
.
Date available: 2008-06-06T22:47:33Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107987
.
Reference: [1] Bader R.: A topological fixed point theory for evolutions inclusions.Z. Anal. Anwendungen 20 (2001), 3–15. MR 1826317
Reference: [2] Bourgain J.: An averaging result for $l^1$-sequences and applications to weakly conditionally compact sets in $L^1(X)$.Israel J. Math. 32 (1979), 289–298. MR 0571083
Reference: [3] Cornet B.: Existence of slow solutions for a class differential inclusions.J. Math. Anal. Appl. 96 (1983), 130–147. MR 0717499
Reference: [4] De Blasi F. S., Gorniewicz L., Pianigiani G.: Topological degree and periodic solutions of differential inclusions.Nonlinear Anal. 37 (1999), 217–245. Zbl 0936.34009, MR 1689752
Reference: [5] De Blasi F. S., Pianigiani G.: Nonconvex valued differential inclusions in Banach spaces.J. Math. Anal. Appl. 157 (1991), 469–494. MR 1112329
Reference: [6] Haddad G., Lasry J.-M.: Periodic solutions of functional differential inclusions and fixed points of $\gamma $-selectionable correspondences.J. Math. Anal. Appl. 96 (1983), 295–312. MR 0719317
Reference: [7] Halidias N., Papageorgiou N. S.: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R^N}$.J. Differential Equations 147 (1998), 123–154. MR 1632661
Reference: [8] Henry C.: Differential equations with discontinuous right hand side for planning procedures.J. Econom. Theory 4 (1972), 545–551. MR 0449534
Reference: [9] Hu S., Kandilakis D., Papageorgiou N. S.: Periodic solutions for nonconvex differential inclusions.Proc. Amer. Math. Soc. 127 (1999), 89–94. Zbl 0905.34036, MR 1451808
Reference: [10] Hu S., Papageorgiou N. S.: On the existence of periodic solutions for nonconvex valued differential inclusions in $\mathbb{R^N}$.Proc. Amer. Math. Soc. 123 (1995), 3043–3050. MR 1301503
Reference: [11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775
Reference: [12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, The Netherlands (2000). Zbl 0943.47037, MR 1741926
Reference: [13] Li C., Xue X.: On the existence of periodic solutions for differential inclusions.J. Math. Anal. Appl. 276 (2002), 168–183. Zbl 1020.34015, MR 1944344
Reference: [14] Macki J., Nistri P., Zecca P.: The existence of periodic solutions to nonautonomous differential inclusions.Proc. Amer. Math. Soc. 104 (1988), 840–844. Zbl 0692.34042, MR 0931741
Reference: [15] Plaskacz S.: Periodic solutions of differential inclusions on compact subsets of $\mathbb{R^N}$.J. Math. Anal. Appl. 148 (1990), 202–212. MR 1052055
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_2.pdf 232.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo