Title:
|
Periodic solutions for differential inclusions in ${\Bbb R}^N$ (English) |
Author:
|
Filippakis, Michael E. |
Author:
|
Papageorgiou, Nikolaos S. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
115-123 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider first order periodic differential inclusions in $\mathbb {R}^N$. The presence of a subdifferential term incorporates in our framework differential variational inequalities in $\mathbb {R}^N$. We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems. (English) |
Keyword:
|
multifunction |
Keyword:
|
convex subdifferential |
Keyword:
|
extremal periodic solution |
Keyword:
|
Moreanu-Yosida approximation. |
MSC:
|
34A60 |
MSC:
|
34C25 |
idZBL:
|
Zbl 1164.34320 |
idMR:
|
MR2240188 |
. |
Date available:
|
2008-06-06T22:47:33Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107987 |
. |
Reference:
|
[1] Bader R.: A topological fixed point theory for evolutions inclusions.Z. Anal. Anwendungen 20 (2001), 3–15. MR 1826317 |
Reference:
|
[2] Bourgain J.: An averaging result for $l^1$-sequences and applications to weakly conditionally compact sets in $L^1(X)$.Israel J. Math. 32 (1979), 289–298. MR 0571083 |
Reference:
|
[3] Cornet B.: Existence of slow solutions for a class differential inclusions.J. Math. Anal. Appl. 96 (1983), 130–147. MR 0717499 |
Reference:
|
[4] De Blasi F. S., Gorniewicz L., Pianigiani G.: Topological degree and periodic solutions of differential inclusions.Nonlinear Anal. 37 (1999), 217–245. Zbl 0936.34009, MR 1689752 |
Reference:
|
[5] De Blasi F. S., Pianigiani G.: Nonconvex valued differential inclusions in Banach spaces.J. Math. Anal. Appl. 157 (1991), 469–494. MR 1112329 |
Reference:
|
[6] Haddad G., Lasry J.-M.: Periodic solutions of functional differential inclusions and fixed points of $\gamma $-selectionable correspondences.J. Math. Anal. Appl. 96 (1983), 295–312. MR 0719317 |
Reference:
|
[7] Halidias N., Papageorgiou N. S.: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R^N}$.J. Differential Equations 147 (1998), 123–154. MR 1632661 |
Reference:
|
[8] Henry C.: Differential equations with discontinuous right hand side for planning procedures.J. Econom. Theory 4 (1972), 545–551. MR 0449534 |
Reference:
|
[9] Hu S., Kandilakis D., Papageorgiou N. S.: Periodic solutions for nonconvex differential inclusions.Proc. Amer. Math. Soc. 127 (1999), 89–94. Zbl 0905.34036, MR 1451808 |
Reference:
|
[10] Hu S., Papageorgiou N. S.: On the existence of periodic solutions for nonconvex valued differential inclusions in $\mathbb{R^N}$.Proc. Amer. Math. Soc. 123 (1995), 3043–3050. MR 1301503 |
Reference:
|
[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775 |
Reference:
|
[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, The Netherlands (2000). Zbl 0943.47037, MR 1741926 |
Reference:
|
[13] Li C., Xue X.: On the existence of periodic solutions for differential inclusions.J. Math. Anal. Appl. 276 (2002), 168–183. Zbl 1020.34015, MR 1944344 |
Reference:
|
[14] Macki J., Nistri P., Zecca P.: The existence of periodic solutions to nonautonomous differential inclusions.Proc. Amer. Math. Soc. 104 (1988), 840–844. Zbl 0692.34042, MR 0931741 |
Reference:
|
[15] Plaskacz S.: Periodic solutions of differential inclusions on compact subsets of $\mathbb{R^N}$.J. Math. Anal. Appl. 148 (1990), 202–212. MR 1052055 |
. |