Previous |  Up |  Next

Article

Title: Slant Hankel operators (English)
Author: Arora, S. C.
Author: Batra, Ruchika
Author: Singh, M. P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 125-133
Summary lang: English
.
Category: math
.
Summary: In this paper the notion of slant Hankel operator $K_\varphi$, with symbol $\varphi$ in $L^\infty$, on the space $L^2({\Bbb T})$, ${\Bbb T}$ being the unit circle, is introduced. The matrix of the slant Hankel operator with respect to the usual basis $\{z^i : i \in {\Bbb Z} \}$ of the space $L^2$ is given by $\langle\alpha_{ij}\rangle = \langle a_{-2i-j}\rangle$, where $\sum\limits_{i=-\infty}^{\infty}a_i z^i$ is the Fourier expansion of $\varphi$. Some algebraic properties such as the norm, compactness of the operator $K_\varphi$ are discussed. Along with the algebraic properties some spectral properties of such operators are discussed. Precisely, it is proved that for an invertible symbol $\varphi$, the spectrum of $K_\varphi$ contains a closed disc. (English)
Keyword: Hankel operators
Keyword: slant Hankel operators
Keyword: slant Toeplitz operators
MSC: 47A10
MSC: 47B35
idZBL: Zbl 1164.47325
idMR: MR2240189
.
Date available: 2008-06-06T22:47:36Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107988
.
Reference: [1] Arora S. C., Ruchika Batra: On Slant Hankel Operators.to appear in Bull. Calcutta Math. Soc. MR 2392281
Reference: [2] Brown A., Halmos P. R.: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1964), 89–102. MR 0160136
Reference: [3] Halmos P. R.: Hilbert Space Problem Book.Springer Verlag, New York, Heidelberg-Berlin, 1979.
Reference: [4] Ho M. C.: Properties of Slant Toeplitz operators.Indiana Univ. Math. J. 45 (1996), 843–862. Zbl 0880.47016, MR 1422109
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_3.pdf 216.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo