Previous |  Up |  Next

Article

Title: On the limit points of the fractional parts of powers of Pisot numbers (English)
Author: Dubickas, Artūras
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 151-158
Summary lang: English
.
Category: math
.
Summary: We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots $, where $\alpha >1$ is a Pisot number and $\xi \in {\mathbb Q}(\alpha )$ is a positive number. We find the set of limit points of this sequence and describe all cases when it has a unique limit point. The case, where $\xi =1$ and the unique limit point is zero, was earlier described by the author and Luca, independently. (English)
Keyword: Pisot numbers
Keyword: fractional parts
Keyword: limit points
MSC: 11J71
MSC: 11R06
idZBL: Zbl 1164.11026
idMR: MR2240352
.
Date available: 2008-06-06T22:47:45Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107991
.
Reference: [1] Bugeaud Y.: Linear mod one transformations and the distribution of fractional parts $ \lbrace \xi (p/q)^n\rbrace $.Acta Arith. 114 (2004), 301–311. MR 2101819
Reference: [2] Cassels J. W. S.: An introduction to Diophantine approximation.Cambridge University Press, 1957. Zbl 0077.04801, MR 0087708
Reference: [3] Dubickas A.: A note on powers of Pisot numbers.Publ. Math. Debrecen 56 (2000), 141–144. Zbl 0999.11035, MR 1740499
Reference: [4] Dubickas A.: Integer parts of powers of Pisot and Salem numbers.Arch. Math. (Basel) 79 (2002), 252–257. Zbl 1004.11059, MR 1944949
Reference: [5] Dubickas A.: Sequences with infinitely many composite numbers.Analytic and Probabilistic Methods in Number Theory, Palanga 2001 (eds. A. Dubickas, A. Laurinčikas and E. Manstavičius), TEV, Vilnius (2002), 57–60. Zbl 1049.11072, MR 1964849
Reference: [6] Dubickas A.: Arithmetical properties of powers of algebraic numbers.Bull. London Math. Soc. 38 (2006), 70–80. Zbl 1164.11025, MR 2201605
Reference: [7] Flatto L., Lagarias J. C., Pollington A. D.: On the range of fractional parts $\lbrace \xi (p/q)^n\rbrace $.Acta Arith. 70 (1995), 125–147. MR 1322557
Reference: [8] Kuba G.: The number of lattice points below a logarithmic curve.Arch. Math. (Basel) 69 (1997), 156–163. Zbl 0899.11050, MR 1458702
Reference: [9] Luca F.: On a question of G. Kuba.Arch. Math. (Basel) 74 (2000), 269–275. Zbl 0995.11043, MR 1742638
Reference: [10] Smyth C. J.: The conjugates of algebraic integers.Amer. Math. Monthly 82 (1975), 86.
Reference: [11] Zaimi T.: An arithmetical property of powers of Salem numbers.J. Number Theory (to appear). Zbl 1147.11037, MR 2256803
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_6.pdf 212.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo