Previous |  Up |  Next

Article

Title: Asymmetric decompositions of vectors in $JB\sp *$-algebras (English)
Author: Siddiqui, Akhlaq A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 159-166
Summary lang: English
.
Category: math
.
Summary: By investigating the extent to which variation in the coefficients of a convex combination of unitaries in a unital $JB^{*}$-algebra permits that combination to be expressed as convex combination of fewer unitaries of the same algebra, we generalise various results of R. V. Kadison and G. K. Pedersen. In the sequel, we shall give a couple of characterisations of $JB^{*}$-algebras of $tsr\ 1$. (English)
Keyword: $C^{*}$-algebras
Keyword: Jordan algebras
Keyword: $JB^{*}$-algebras
Keyword: unitary isotopes
MSC: 17C65
MSC: 46K70
MSC: 46L70
idZBL: Zbl 1164.46342
idMR: MR2240353
.
Date available: 2008-06-06T22:47:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107992
.
Reference: [1] Jacobson N.: Structure and representations of Jordan algebras.AMS Providence, Rhode Island, 1968. Zbl 0218.17010, MR 0251099
Reference: [2] Kadison R. V., Pedersen G. K.: Means and convex combinations of unitary operators.Math. Scand. 57 (1985), 249–266. Zbl 0573.46034, MR 0832356
Reference: [3] Rudin W.: Functional analysis.McGraw-Hill, New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [4] Siddiqui A. A.: Positivity of invertibles in unitary isotopes of $JB^{*}$-algebras.Preprint.
Reference: [5] Siddiqui A. A.: Self-adjointness in unitary isotopes of $JB^{*}$-algebras.Preprint. Zbl 1142.46020, MR 2263481
Reference: [6] Siddiqui A. A.: $JB^{*}$-algebras of $tsr\ 1$.Preprint. Zbl 1227.46036
Reference: [7] Wright J. D. M.: Jordan $C^{*}$-algebras.Mich. Math. J. 24 (1977), 291–302. Zbl 0384.46040, MR 0487478
Reference: [8] Youngson M. A.: A Vidav theorem for Banach Jordan algebras.Math. Proc. Cambridge Philos. Soc. 84 (1978), 263–272. Zbl 0392.46038, MR 0493372
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_7.pdf 212.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo