Title:
|
Periodic solutions for systems with nonsmooth and partially coercive potential (English) |
Author:
|
Filippakis, Michael E. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
225-232 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.). (English) |
Keyword:
|
locally linking Lipschitz function |
Keyword:
|
generalized subdifferential |
Keyword:
|
nonsmooth critical point theory |
Keyword:
|
nonsmooth Palais-Smale condition |
Keyword:
|
$p$-Laplacian |
Keyword:
|
periodic system |
MSC:
|
34A60 |
MSC:
|
34B15 |
MSC:
|
34C25 |
MSC:
|
47J30 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1164.34319 |
idMR:
|
MR2260380 |
. |
Date available:
|
2008-06-06T22:48:08Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108000 |
. |
Reference:
|
[1] Adams R.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York/London 1975. Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] Berger M. Schechter M.: On the solvability of semilinear gradient operator equations.Adv. Math. 25 (1977), 97–132. MR 0500336 |
Reference:
|
[3] Brezis H., Nirenberg L.: Remarks on finding critical points.Comm. Pure Appl. Math. 44 (1991), 939–963. Zbl 0751.58006, MR 1127041 |
Reference:
|
[4] Chang K. C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246 |
Reference:
|
[5] Clarke F.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0582.49001, MR 0709590 |
Reference:
|
[6] Dang H., Oppenheimer S.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198, (1996) 35–48. MR 1373525 |
Reference:
|
[7] del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE.Nonlinear Anal. 18, (1992) 79–92. MR 1138643 |
Reference:
|
[8] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080 |
Reference:
|
[9] Gasinski L., Papageorgiou N. S.: A multiplicity result for nonlinear second order periodic equations with nonsmooth potential.Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. Zbl 1056.47056, MR 2017079 |
Reference:
|
[10] Guo Z.: Boundary value problems for a class of quasilinear ordinary differential equations.Differential Integral Equations 6 (1993), 705–719. MR 1202567 |
Reference:
|
[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands 1997. Zbl 0887.47001, MR 1485775 |
Reference:
|
[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, The Netherlands 2000. Zbl 0943.47037, MR 1741926 |
Reference:
|
[13] Kandilakis D., Kourogenis N., Papageorgiou N.: Two nontrivial critical point for nosmooth functional via local linking and applications.J. Global Optim., to appear. MR 2210278 |
Reference:
|
[14] Kourogenis N., Papageorgiou N. S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance.J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. Zbl 0999.58006, MR 1775181 |
Reference:
|
[15] Kourogenis N., Papageorgiou N. S.: A weak nonsmooth Palais-Smale condition and coercivity.Rend. Circ. Mat. Palermo 49 (2000), 521–526. Zbl 1225.49021, MR 1809092 |
Reference:
|
[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038 |
Reference:
|
[17] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems.Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. Zbl 0676.58017, MR 0982267 |
Reference:
|
[18] Tang C. L., Wu X. P.: Periodic solutions for second order systems with not uniformly coercive potential.J. Math. Anal. Appl. 259 (2001), 386–397. Zbl 0999.34039, MR 1842066 |
. |