Previous |  Up |  Next

Article

Title: On the first eigenvalue of spacelike hypersurfaces in Lorentzian space (English)
Author: Wu, Bing-Ye
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 3
Year: 2006
Pages: 233-238
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain a lower bound for the first Dirichlet eigenvalue of complete spacelike hypersurfaces in Lorentzian space in terms of mean curvature and the square length of the second fundamental form. This estimate is sharp for totally umbilical hyperbolic spaces in Lorentzian space. We also get a sufficient condition for spacelike hypersurface to have zero first eigenvalue. (English)
Keyword: Lorentzian space
Keyword: spacelike hypersurface
Keyword: the first eigenvalue
Keyword: Gauss map
MSC: 53C40
MSC: 53C50
MSC: 58J50
idZBL: Zbl 1164.53373
idMR: MR2260381
.
Date available: 2008-06-06T22:48:10Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108001
.
Reference: [1] Cheung L. F., Leung P. F.: Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space.Math. Z. 236 (2001), 525–530. Zbl 0990.53029, MR 1821303
Reference: [2] Cheng S. Y., Yau S. T.: Differential equations on Riemannian manifolds and geometric applications.Comm. Pure Appl. Math. 28 (1975), 333–354. MR 0385749
Reference: [3] Kobayashi S., Nomizu K.: Foundations of Differential Geometry.vol II, Interscience, New York, 1969. Zbl 0175.48504, MR 0238225
Reference: [4] Mckean H. P.: An upper bound for the spectrum of $\Delta $ on a manifold of negative curvature.J. Differential Geometry 4 (1970), 359–366. MR 0266100
Reference: [5] Pacellibessa G., Montenegro J. F.: Eigenvalue estimates for submanifolds with locally bounded mean curvature.Ann. Glob. Anal. Geom. 24 (2003), 279–290. MR 1996771
Reference: [6] Schoen R., Yau S. T.: Lectures on differential geometry.Lecture Notes in Geom. Topo. 1 (1994). Zbl 0830.53001, MR 1333601
.

Files

Files Size Format View
ArchMathRetro_042-2006-3_4.pdf 189.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo