Previous |  Up |  Next

Article

Title: On three equivalences concerning Ponomarev-systems (English)
Author: Ge, Ying
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 3
Year: 2006
Pages: 239-246
Summary lang: English
.
Category: math
.
Summary: Let $\lbrace {\mathcal P}_n\rbrace $ be a sequence of covers of a space $X$ such that $\lbrace st(x,{\mathcal P}_n)\rbrace $ is a network at $x$ in $X$ for each $x\in X$. For each $n\in \mathbb N$, let ${\mathcal P}_n=\lbrace P_{\beta }:\beta \in \Lambda _n\rbrace $ and $\Lambda _ n$ be endowed the discrete topology. Put $M=\lbrace b=(\beta _n)\in \Pi _{n\in \mathbb N}\Lambda _ n: \lbrace P_{\beta _n}\rbrace $ forms a network at some point $x_b\ in \ X\rbrace $ and $f:M\longrightarrow X$ by choosing $f(b)=x_b$ for each $b\in M$. In this paper, we prove that $f$ is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each $\mathcal {P}_n$ is a $cs^*$-cover (resp. $fcs$-cover, $cfp$-cover) of $X$. As a consequence of this result, we prove that $f$ is a sequentially-quotient, $s$-mapping if and only if it is a sequence-covering, $s$-mapping, where “$s$” can not be omitted. (English)
Keyword: Ponomarev-system
Keyword: point-star network
Keyword: $cs^*$-(resp. $fcs$-
Keyword: $cfp$-)cover
Keyword: sequentially-quotient (resp. sequence-covering
Keyword: compact-covering) mapping
MSC: 54E40
idZBL: Zbl 1164.54363
idMR: MR2260382
.
Date available: 2008-06-06T22:48:13Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108002
.
Reference: [1] Boone J. R., and Siwiec F.: Sequentially quotient mappings.Czechoslovak Math. J. 26 (1976), 174–182. MR 0402689
Reference: [2] Ge Y.: On quotient compact images of locally separable metric spaces.Topology Proceedings 276 (2003), 351–560. MR 2048944
Reference: [3] Ge Y., Gu J.: On $\pi $-images of separable metric spaces.Mathematical Sciences 10 (2004), 65–71. Zbl 1104.54014, MR 2127483
Reference: [4] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303–332. Zbl 0561.54016, MR 0749538
Reference: [5] Ikeda Y., Liu C., Tanaka Y.: Quotient compact images of metric spaces and related matters.Topology Appl. 122 (2002), 237–252. Zbl 0994.54015, MR 1919303
Reference: [6] Lin S.: Point-countable covers and sequence-covering mappings.Chinese Science Press, Beijing, 2002. (Chinese) Zbl 1004.54001, MR 1939779
Reference: [7] Lin S., Yan P.: Notes on $cfp$-covers.Comment. Math. Univ. Carolin. 44 (2003), 295–306. Zbl 1100.54021, MR 2026164
Reference: [8] Michael E.: $\aleph _0$-spaces.J. Math. Mech. 15 (1966), 983–1002. MR 0206907
Reference: [9] Ponomarev V. I.: Axiom of countability and continuous mappings.Bull. Pol. Acad. Math. 8 (1960), 127–133. MR 0116314
Reference: [10] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces and symmetric spaces.Houston J. Math. 32 (2006), 99–117. Zbl 1102.54034, MR 2202355
.

Files

Files Size Format View
ArchMathRetro_042-2006-3_5.pdf 227.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo