Previous |  Up |  Next

Article

Title: A logic of orthogonality (English)
Author: Adámek, Jiří
Author: Hébert, M.
Author: Sousa, L.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 4
Year: 2006
Pages: 309-334
Summary lang: English
.
Category: math
.
Summary: A logic of orthogonality characterizes all “orthogonality consequences" of a given class $\Sigma $ of morphisms, i.e. those morphisms $s$ such that every object orthogonal to $\Sigma $ is also orthogonal to $s$. A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes $\Sigma $ of morphisms such that all members except a set are regular epimorphisms and (b) for all classes $\Sigma $, without restriction, under the set-theoretical assumption that Vopěnka’s Principle holds. For finitary morphisms, i.e. morphisms with finitely presentable domains and codomains, an appropriate finitary logic is presented, and proved to be sound and complete; here the proof follows immediately from previous joint results of Jiří Rosický and the first two authors. (English)
MSC: 03C05
MSC: 03G30
MSC: 18C10
MSC: 18C35
idZBL: Zbl 1156.18301
idMR: MR2283016
.
Date available: 2008-06-06T22:48:43Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108011
.
Reference: [1] Adámek J., Hébert M., Sousa L.: A Logic of Injectivity.Preprints of the Department of Mathematics of the University of Coimbra 06-23 (2006). Zbl 1184.18002, MR 2369160
Reference: [2] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories.John Wiley and Sons, New York 1990. Freely available at www.math.uni-bremen.de/$\sim $dmb/acc.pdf MR 1051419
Reference: [3] Adámek J., Rosický J.: Locally presentable and accessible categories.Cambridge University Press, 1994. Zbl 0795.18007, MR 1294136
Reference: [4] Adámek J., Sobral M., Sousa L.: A logic of implications in algebra and coalgebra.Preprint. Zbl 1229.18001, MR 2565857
Reference: [5] Borceux F.: Handbook of Categorical Algebra I.Cambridge University Press, 1994.
Reference: [6] Casacuberta C., Frei A.: On saturated classes of morphisms.Theory Appl. Categ. 7, No. 4 (2000), 43–46. Zbl 0947.18002, MR 1751224
Reference: [7] Freyd P. J., Kelly G. M.: Categories of continuous functors I.J. Pure Appl. Algebra 2 (1972), 169–191. Zbl 0257.18005, MR 0322004
Reference: [8] Gabriel P., Zisman M.: Calculus of Fractions and Homotopy Theory.Springer Verlag 1967. Zbl 0186.56802, MR 0210125
Reference: [9] Hébert M.: $\mathcal{K}$-Purity and orthogonality.Theory Appl. Categ. 12, No. 12 (2004), 355–371. MR 2068519
Reference: [10] Hébert M., Adámek J., Rosický J.: More on orthogonolity in locally presentable categories.Cahiers Topologie Géom. Différentielle Catég. 62 (2001), 51–80. MR 1820765
Reference: [11] Mac Lane S.: Categories for the Working Mathematician.Springer-Verlag, Berlin-Heidelberg-New York 1971. Zbl 0232.18001
Reference: [12] Roşu G.: Complete categorical equational deduction.Lecture Notes in Comput. Sci. 2142 (2001), 528–538. MR 1908795
.

Files

Files Size Format View
ArchMathRetro_042-2006-4_1.pdf 353.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo