Title:
|
A logic of orthogonality (English) |
Author:
|
Adámek, Jiří |
Author:
|
Hébert, M. |
Author:
|
Sousa, L. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
309-334 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A logic of orthogonality characterizes all “orthogonality consequences" of a given class $\Sigma $ of morphisms, i.e. those morphisms $s$ such that every object orthogonal to $\Sigma $ is also orthogonal to $s$. A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes $\Sigma $ of morphisms such that all members except a set are regular epimorphisms and (b) for all classes $\Sigma $, without restriction, under the set-theoretical assumption that Vopěnka’s Principle holds. For finitary morphisms, i.e. morphisms with finitely presentable domains and codomains, an appropriate finitary logic is presented, and proved to be sound and complete; here the proof follows immediately from previous joint results of Jiří Rosický and the first two authors. (English) |
MSC:
|
03C05 |
MSC:
|
03G30 |
MSC:
|
18C10 |
MSC:
|
18C35 |
idZBL:
|
Zbl 1156.18301 |
idMR:
|
MR2283016 |
. |
Date available:
|
2008-06-06T22:48:43Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108011 |
. |
Reference:
|
[1] Adámek J., Hébert M., Sousa L.: A Logic of Injectivity.Preprints of the Department of Mathematics of the University of Coimbra 06-23 (2006). Zbl 1184.18002, MR 2369160 |
Reference:
|
[2] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories.John Wiley and Sons, New York 1990. Freely available at www.math.uni-bremen.de/$\sim $dmb/acc.pdf MR 1051419 |
Reference:
|
[3] Adámek J., Rosický J.: Locally presentable and accessible categories.Cambridge University Press, 1994. Zbl 0795.18007, MR 1294136 |
Reference:
|
[4] Adámek J., Sobral M., Sousa L.: A logic of implications in algebra and coalgebra.Preprint. Zbl 1229.18001, MR 2565857 |
Reference:
|
[5] Borceux F.: Handbook of Categorical Algebra I.Cambridge University Press, 1994. |
Reference:
|
[6] Casacuberta C., Frei A.: On saturated classes of morphisms.Theory Appl. Categ. 7, No. 4 (2000), 43–46. Zbl 0947.18002, MR 1751224 |
Reference:
|
[7] Freyd P. J., Kelly G. M.: Categories of continuous functors I.J. Pure Appl. Algebra 2 (1972), 169–191. Zbl 0257.18005, MR 0322004 |
Reference:
|
[8] Gabriel P., Zisman M.: Calculus of Fractions and Homotopy Theory.Springer Verlag 1967. Zbl 0186.56802, MR 0210125 |
Reference:
|
[9] Hébert M.: $\mathcal{K}$-Purity and orthogonality.Theory Appl. Categ. 12, No. 12 (2004), 355–371. MR 2068519 |
Reference:
|
[10] Hébert M., Adámek J., Rosický J.: More on orthogonolity in locally presentable categories.Cahiers Topologie Géom. Différentielle Catég. 62 (2001), 51–80. MR 1820765 |
Reference:
|
[11] Mac Lane S.: Categories for the Working Mathematician.Springer-Verlag, Berlin-Heidelberg-New York 1971. Zbl 0232.18001 |
Reference:
|
[12] Roşu G.: Complete categorical equational deduction.Lecture Notes in Comput. Sci. 2142 (2001), 528–538. MR 1908795 |
. |