Previous |  Up |  Next

Article

Title: Initial normal covers in bi-Heyting toposes (English)
Author: Borceux, Francis
Author: Bourn, Dominique
Author: Johnstone, Peter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 4
Year: 2006
Pages: 335-356
Summary lang: English
.
Category: math
.
Summary: The dual of the category of pointed objects of a topos is semi-abelian, thus is provided with a notion of semi-direct product and a corresponding notion of action. In this paper, we study various conditions for representability of these actions. First, we show this to be equivalent to the existence of initial normal covers in the category of pointed objects of the topos. For Grothendieck toposes, actions are representable provided the topos admits an essential Boolean covering. This contains the case of Boolean toposes and toposes of presheaves. In the localic case, the representability of actions forces the topos to be bi-Heyting: the lattices of subobjects are both Heyting algebras and the dual of Heyting algebras. (English)
MSC: 06D20
MSC: 18B25
idZBL: Zbl 1164.18301
idMR: MR2283017
.
Date available: 2008-06-06T22:48:45Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108012
.
Reference: [1] Borceux F.: When is $\Omega $ a cogenerator in a topos?.Cahiers Topol. Géom. Diff. 16 (1975), 3–15. Zbl 0311.18006, MR 0382393
Reference: [2] Borceux F.: Handbook of Categorical Algebra 3: Categories of Sheaves.Encyclopaedia Math. Appl. 52 (1994). Zbl 0911.18001, MR 1315049
Reference: [3] Borceux F.: A survey of semi-abelian categories.In: Galois theory, Hopf Algebras, and Semi-abelian Categories, Fields Inst. Commun. 43 (2004), 27–60. Zbl 1067.18010, MR 2075580
Reference: [4] Borceux F., Bourn D.: Mal’cev, Protomodular, Homological and Semi-abelian Categories.Math. Appl. 566 (2004). Zbl 1061.18001, MR 2044291
Reference: [5] Borceux F., Bourn D.: Split extension classifier and centrality.to appear in the Proceedings of the Streetfest 2005. Zbl 1133.18002, MR 2342823
Reference: [6] Borceux F., Janelidze G., Kelly G. M.: Internal object actions.Comment. Math. Univ. Carolin. 46 (2005), 235–255. Zbl 1121.18004, MR 2176890
Reference: [7] Borceux F., Janelidze G., Kelly G. M.: On the representability of actions in a semi-abelian category.Theory Appl. Categ. 14 (2005), 244–286. Zbl 1103.18006, MR 2182676
Reference: [8] Bourn D.: Normal functors and strong protomodularity.Theory Appl. Categ. 7 (2000), 206–218. Zbl 0947.18004, MR 1766393
Reference: [9] Bourn D.: A categorical genealogy for the congruence distributive property.Theory Appl. Categ. 8 (2001), 391–407. Zbl 0978.18005, MR 1847038
Reference: [10] Bourn D.: Protomodular aspects of the dual of a topos.Adv. Math. 187 (2004), 240–255. MR 2074178
Reference: [11] Bourn D., Janelidze G.: Protomodularity, descent and semi-direct products.Theory Appl. Categ. 4 (1998), 37–46. MR 1615341
Reference: [12] Janelidze G., Márki L., Tholen W.: Semi-abelian categories.J. Pure Appl. Alg. 168 (2002), 367–386. Zbl 0993.18008, MR 1887164
Reference: [13] Johnstone P. T.: Stone Spaces.Cambridge Stud. Adv. Math. No. 3 (1982). Zbl 0499.54001, MR 0698074
Reference: [14] Johnstone P. T.: Sketches of an Elephant: a Topos Theory Compendium.volumes 1–2, Oxford Logic Guides 43–44 (2002). Zbl 1071.18002, MR 1953060
Reference: [15] Mac Lane S.: Categories for the Working Mathematician.Graduate Texts in Math. No. 5 (1971; revised edition 1998). Zbl 0232.18001
.

Files

Files Size Format View
ArchMathRetro_042-2006-4_2.pdf 314.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo