Previous |  Up |  Next

Article

Title: Natural weak factorization systems (English)
Author: Grandis, Marco
Author: Tholen, Walter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 4
Year: 2006
Pages: 397-408
Summary lang: English
.
Category: math
.
Summary: In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal {K}$ is introduced, as a pair (comonad, monad) over $\mathcal {K}^{\bf 2}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories. (English)
MSC: 18C15
idZBL: Zbl 1164.18300
idMR: MR2283020
.
Date available: 2008-06-06T22:48:54Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108015
.
Reference: [1] Adámek J., Herrlich H., Rosický J., Tholen W.: Weak factorization systems and topological functors.Appl. Categorical Structures 10 (2002), 237–249. Zbl 0997.18002, MR 1916156
Reference: [2] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories.Wiley (New York 1990). MR 1051419
Reference: [3] Carboni A., Janelidze G.: Decidable (= separable) objects and morphisms in lextensive categories.J. Pure Appl. Algebra 110 (1996), 219–240. Zbl 0858.18004, MR 1393114
Reference: [4] Coppey L.: Algèbres de decompositions et précatégories.Diagrammes 4 (Suppl.) (1980). Zbl 0497.18015, MR 0684912
Reference: [5] Grandis M., Paré R.: Limits in double categories.Cah. Topol. Géom. Différ. Catég. 40 (1999), 162–220. Zbl 0939.18007, MR 1716779
Reference: [6] Gray J. W.: Formal category theory: adjointness for 2-categories.Lecture Notes in Math. Vol. 391, Springer-Verlag (Berlin 1974). Zbl 0285.18006, MR 0371990
Reference: [7] Korostenski M., Tholen W.: Factorization systems as Eilenberg–Moore algebras.J. Pure Appl. Algebra 85 (1993), 57–72. Zbl 0778.18001, MR 1207068
Reference: [8] Rosický J., Tholen W.: Lax factorization algebras.J. Pure Appl. Algebra 175 (2002), 355–382. Zbl 1013.18001, MR 1935984
Reference: [9] Rosický J., Tholen W.: Factorization, fibration and torsion.preprint (York University 2006). Zbl 1184.18009, MR 2369170
Reference: [10] Rosebrugh R., Wood R. J.: Coherence for factorization algebras.Theory Appl. Categories 10 (2002), 134–147. Zbl 0994.18001, MR 1883483
.

Files

Files Size Format View
ArchMathRetro_042-2006-4_5.pdf 253.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo