Previous |  Up |  Next

Article

Title: Sublocale sets and sublocale lattices (English)
Author: Picado, Jorge
Author: Pultr, Aleš
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 4
Year: 2006
Pages: 409-418
Summary lang: English
.
Category: math
.
Summary: We present very short and simple proofs of such facts as co-frame distributivity of sublocales, zero-dimensionality of the resulting co-frames, Isbell’s Density Theorem and characteristic properties of fit and subfit frames, using sublocale sets. (English)
Keyword: frames
Keyword: sublocales
Keyword: coframe of sublocales
Keyword: fitness and subfitness
MSC: 06D22
idZBL: Zbl 1164.06313
idMR: MR2283021
.
Date available: 2008-06-06T22:48:57Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108016
.
Reference: [1] Davey B. A., Priestley H. A.: Introduction to Lattices and Order.Second Edition, Cambridge University Press, 2001. Zbl 1002.06001, MR 1902334
Reference: [2] Isbell J. R.: Atomless parts of spaces.Math. Scand. 31 (1972), 5–32. Zbl 0246.54028, MR 0358725
Reference: [3] Johnstone P. T.: Stone Spaces.Cambridge Stud. Adv. Math. No 3, Cambridge University Press, 1983. MR 0698074
Reference: [4] Mac Lane S.: Categories for the Working Mathematician.Springer-Verlag, New York, 1971. Zbl 0232.18001, MR 0354798
Reference: [5] Picado J., Pultr A., Tozzi A.: Locales.In: M. C. Pedicchio and W. Tholen (Eds.), Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory, Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press, 2003, pp. 49–101. Zbl 1080.06010, MR 2056581
Reference: [6] Priestley H. A.: Representation of distributive lattices by means of ordered Stone spaces.Bull. London Math. Soc. 2 (1970), 186–190. Zbl 0201.01802, MR 0265242
Reference: [7] Priestley H. A.: Ordered topological spaces and the representation of distributive lattices.Proc. London Math. Soc. 324 (1972), 507–530. Zbl 0323.06011, MR 0300949
Reference: [8] Pultr A., Sichler J.: Frames in Priestley duality.Cahiers Topologie Géom. Différentielle Catég. XXIX (1988), 193–202. MR 0975372
Reference: [9] Pultr A., Sichler J.: A Priestley view of spatialization of frames.Cahiers Topologie Géom. Différentielle Catég. XLI (2000), 225–238. Zbl 0970.06006, MR 1784219
Reference: [10] Simmons H.: The lattice theoretic part of topological separation properties.Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. Zbl 0396.54014, MR 0493959
.

Files

Files Size Format View
ArchMathRetro_042-2006-4_6.pdf 213.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo