Article
Keywords:
algebraic curvature tensors; affine curvature tensors
Summary:
We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory.
References:
                        
[1] Bokan N.: 
On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection. Rend. Circ. Mat. Palermo XXIX (1990), 331–380.  
MR 1119735 | 
Zbl 0728.53016[2] Díaz-Ramos J. C., García-Río E.: 
A note on the structure of algebraic curvature tensors. Linear Algebra Appl. 382 (2004), 271–277.  
MR 2050112 | 
Zbl 1056.53014[3] Fiedler B.: 
Determination of the structure of algebraic curvature tensors by means of Young symmetrizers. Seminaire Lotharingien de Combinatoire B48d (2003). 20 pp. Electronically published:  
http://www.mat.univie.ac.at/$\sim $slc/; see also math.CO/0212278.  
MR 1988613 | 
Zbl 1043.53016[4] Gilkey P.: 
Geometric properties of natural operators defined by the Riemann curvature tensor. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.  
MR 1877530 | 
Zbl 1007.53001[5] Singer I. M., Thorpe J. A.: 
The curvature of $4$-dimensional Einstein spaces. 1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 355–365.  
MR 0256303 | 
Zbl 0199.25401[6] Simon U., Schwenk-Schellschmidt A., Viesel H.: 
Introduction to the affine differential geometry of hypersurfaces. Science University of Tokyo 1991.  
MR 1200242[7] Strichartz R.: 
Linear algebra of curvature tensors and their covariant derivatives. Can. J. Math. XL (1988), 1105–1143.  
MR 0973512 | 
Zbl 0652.53012[8] Weyl H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung. Gött. Nachr. (1921), 99–112.