| Title: | Algebraic theory of affine curvature tensors (English) | 
| Author: | Blažić, N. | 
| Author: | Gilkey, P. | 
| Author: | Nikčević, S. | 
| Author: | Simon, U. | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 42 | 
| Issue: | 5 | 
| Year: | 2006 | 
| Pages: | 147-168 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory. (English) | 
| Keyword: | algebraic curvature tensors | 
| Keyword: | affine curvature tensors | 
| MSC: | 53Bxx | 
| idZBL: | Zbl 1164.53320 | 
| idMR: | MR2322404 | 
| . | 
| Date available: | 2008-06-06T22:49:16Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/108024 | 
| . | 
| Reference: | [1] Bokan N.: On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection.Rend. Circ. Mat. Palermo XXIX (1990), 331–380.  Zbl 0728.53016, MR 1119735 | 
| Reference: | [2] Díaz-Ramos J. C., García-Río E.: A note on the structure of algebraic curvature tensors.Linear Algebra Appl. 382 (2004), 271–277.  Zbl 1056.53014, MR 2050112 | 
| Reference: | [3] Fiedler B.: Determination of the structure of algebraic curvature tensors by means of Young symmetrizers.Seminaire Lotharingien de Combinatoire B48d (2003). 20 pp. Electronically published: http://www.mat.univie.ac.at/$\sim $slc/; see also math.CO/0212278.  Zbl 1043.53016, MR 1988613 | 
| Reference: | [4] Gilkey P.: Geometric properties of natural operators defined by the Riemann curvature tensor.World Scientific Publishing Co., Inc., River Edge, NJ, 2001.  Zbl 1007.53001, MR 1877530 | 
| Reference: | [5] Singer I. M., Thorpe J. A.: The curvature of $4$-dimensional Einstein spaces.1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 355–365.  Zbl 0199.25401, MR 0256303 | 
| Reference: | [6] Simon U., Schwenk-Schellschmidt A., Viesel H.: Introduction to the affine differential geometry of hypersurfaces.Science University of Tokyo 1991.  MR 1200242 | 
| Reference: | [7] Strichartz R.: Linear algebra of curvature tensors and their covariant derivatives.Can. J. Math. XL (1988), 1105–1143.  Zbl 0652.53012, MR 0973512 | 
| Reference: | [8] Weyl H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung.Gött. Nachr. (1921), 99–112. | 
| . |