Previous |  Up |  Next

Article

Title: On $S$-Noetherian rings (English)
Author: Liu, Zhongkui
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 1
Year: 2007
Pages: 55-60
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated. (English)
Keyword: $S$-Noetherian ring
Keyword: generalized power series ring
Keyword: anti-Archimedean multiplicative set
Keyword: $S$-finite ideal
MSC: 16P40
idZBL: Zbl 1160.16307
idMR: MR2310124
.
Date available: 2008-06-06T22:50:29Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108049
.
Reference: [1] Anderson D. D., Kang B. G., Park M. H.: Anti-archimedean rings and power series rings.Comm. Algebra 26 (1998), 3223–3238. Zbl 0912.13008, MR 1641603
Reference: [2] Anderson D. D., Dumitrescu T.: $S$-Noetherian rings.Comm. Algebra 30 (2002), 4407–4416. Zbl 1060.13007, MR 1936480
Reference: [3] Brookfield G.: Noetherian generalized power series rings.Comm. Algebra 32 (2004), 919–926. Zbl 1062.16049, MR 2063789
Reference: [4] Kang B. G., Park M. H.: A localization of a power series ring over a valuation domain.J. Pure Appl. Algebra 140 (1999), 107–124. Zbl 0971.13012, MR 1693896
Reference: [5] Liu Zhongkui: Endomorphism rings of modules of generalized inverse polynomials.Comm. Algebra 28 (2000), 803–814. Zbl 0949.16026, MR 1736764
Reference: [6] Ribenboim P.: Noetherian rings of generalized power series.J. Pure Appl. Algebra 79 (1992), 293–312. Zbl 0761.13007, MR 1167578
Reference: [7] Ribenboim P.: Rings of generalized power series II: units and zero-divisors.J. Algebra 168 (1994), 71–89. Zbl 0806.13011, MR 1289092
Reference: [8] Ribenboim P.: Special properties of generalized power series.J. Algebra 173 (1995), 566–586. Zbl 0852.13008, MR 1327869
Reference: [9] Ribenboim P.: Semisimple rings and von Neumann regular rings of generalized power series.J. Algebra 198 (1997), 327–338. MR 1489900
Reference: [10] Varadarajan K.: Noetherian generalized power series rings and modules.Comm. Algebra 29 (2001), 245–251. Zbl 1005.16043, MR 1842494
Reference: [11] Varadarajan K.: Generalized power series modules.Comm. Algebra 29 (2001), 1281–1294. Zbl 0988.16035, MR 1842412
.

Files

Files Size Format View
ArchMathRetro_043-2007-1_5.pdf 202.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo