Previous |  Up |  Next

Article

Title: On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations (English)
Author: Naito, Manabu
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 1
Year: 2007
Pages: 39-53
Summary lang: English
.
Category: math
.
Summary: The higher-order nonlinear ordinary differential equation \[ x^{(n)} + \lambda p(t)f(x) = 0\,, \quad t \ge a\,, \] is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions $x(t;\lambda )$ satisfying $\lim _{t\rightarrow \infty }x(t;\lambda ) = 1$ is studied. The results can be applied to a singular eigenvalue problem. (English)
Keyword: nonoscillatory solutions
Keyword: zeros of solutions
Keyword: singular eigenvalue problems
MSC: 34B40
MSC: 34C10
idZBL: Zbl 1164.34014
idMR: MR2310123
.
Date available: 2008-06-06T22:50:27Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108048
.
Reference: [1] Elias U.: Eigenvalue problems for the equation $Ly + \lambda p(x)y = 0$.J. Differential Equations 29 (1978), 28–57. Zbl 0369.34008, MR 0486759
Reference: [2] Elias U.: Oscillation Theory of Two-Term Differential Equations.Kluwer, 1997. Zbl 0878.34022, MR 1445292
Reference: [3] Elias U.: Singular eigenvalue problems for the equation $y^{(n)} + \lambda p(x)y = 0$.Monatsh. Math. 142 (2004), 205–225. MR 2071246
Reference: [4] Elias U., Pinkus A.: Nonlinear eigenvalue problems for a class of ordinary differential equations.Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 1333–1359. Zbl 1028.34076, MR 1950810
Reference: [5] Hartman P.: Ordinary Differential Equations.Wiley, 1964. Zbl 0125.32102, MR 0171038
Reference: [6] Kiguradze I. T., Chanturia T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer, 1993. Zbl 0782.34002
Reference: [7] Naito M.: On the number of zeros of nonoscillatory solutions to higher-order linear ordinary differential equations.Monatsh. Math. 136 (2002), 237–242. Zbl 1009.34034, MR 1919646
Reference: [8] Naito M., Naito Y.: Solutions with prescribed numbers of zeros for nonlinear second order differential equations.Funkcial. Ekvac. 37 (1994), 505–520. Zbl 0820.34019, MR 1311557
Reference: [9] Naito Y., Tanaka S.: On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations.Nonlinear Anal. 56 (2004), 919–935. Zbl 1046.34038, MR 2036055
.

Files

Files Size Format View
ArchMathRetro_043-2007-1_4.pdf 255.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo