Previous |  Up |  Next

Article

Title: Periodic solutions of second order nonlinear functional difference equations (English)
Author: Liu, Yuji
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 1
Year: 2007
Pages: 67-74
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for the existence of at least one $T-$periodic solution of second order nonlinear functional difference equations are established. We allow $f$ to be at most linear, superlinear or sublinear in obtained results. (English)
Keyword: periodic solutions
Keyword: second order functional difference equation
Keyword: fixed-point theorem
Keyword: growth condition
MSC: 39A11
MSC: 47N20
idZBL: Zbl 1164.39005
idMR: MR2310126
.
Date available: 2008-06-06T22:50:35Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108051
.
Reference: [1] Atici F. M., Gusenov G. Sh.: Positive periodic solutions for nonlinear difference equations with periodic coefficients.J. Math. Anal. Appl. 232 (1999), 166–182. MR 1683041
Reference: [2] Atici F. M., Cabada A.: Existence and uniqueness results for discrete second order periodic boundary value problems.Comput. Math. Appl. 45 (2003), 1417–1427. Zbl 1057.39008, MR 2000606
Reference: [3] Deimling K.: Nonlinear Functional Analysis.Springer-Verlag, New York, 1985. Zbl 0559.47040, MR 0787404
Reference: [4] Guo Z., Yu J.: The existence of periodic and subharmonic solutions for second order superlinear difference equations.Science in China (Series A) 3 (2003), 226–235. MR 2014482
Reference: [5] Jiang D., O’Regan D., Agarwal R. P.: Optimal existence theory for single and multiple positive periodic solutions to functional difference equations.Appl. Math. Lett. 161 (2005), 441–462. Zbl 1068.39009, MR 2112417
Reference: [6] Kocic V. L., Ladas G.: Global behivior of nonlinear difference equations of higher order with applications.Kluwer Academic Publishers, Dordrecht-Boston-London, 1993. MR 1247956
Reference: [7] Ma M., Yu J.: Existence of multiple positive periodic solutions for nonlinear functional difference equations.J. Math. Anal. Appl. 305 (2005), 483–490. Zbl 1070.39019, MR 2130716
Reference: [8] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-II. Equivalent linearization.J. Franklin Inst. B 320 (1985), 169–174. Zbl 0589.39004, MR 0818865
Reference: [9] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-III. Perturbation theory.J. Franklin Inst. B 321 (1986), 39–47. Zbl 0592.39005, MR 0825907
Reference: [10] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-IV. Multi-discrete time method.J. Franklin Inst. B 324 (1987), 263–271. Zbl 0629.39002, MR 0910641
Reference: [11] Raffoul Y. N.: Positive periodic solutions for scalar and vector nonlinear difference equations.Pan-American J. Math. 9 (1999), 97–111.
Reference: [12] Wang Y., Shi Y.: Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions.J. Math. Anal. Appl. 309 (2005), 56–69. Zbl 1083.39019, MR 2154027
Reference: [13] Zeng Z.: Existence of positive periodic solutions for a class of nonautonomous difference equations.Electronic J. Differential Equations 3 (2006), 1–18. Zbl 1093.39014, MR 2198916
Reference: [14] Zhang R., Wang Z., Chen Y., Wu J.: Periodic solutions of a single species discrete population model with periodic harvest/stock.Comput. Math. Appl. 39 (2000), 77–90. Zbl 0970.92019, MR 1729420
Reference: [15] Zhu L., Li Y.: Positive periodic solutions of higher-dimensional functional difference equations with a parameter.J. Math. Anal. Appl. 290 (2004), 654–664. Zbl 1042.39005, MR 2033049
.

Files

Files Size Format View
ArchMathRetro_043-2007-1_7.pdf 202.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo