Previous |  Up |  Next

Article

Title: Limit and integral properties of principal solutions for half-linear differential equations (English)
Author: Cecchi, Mariella
Author: Došlá, Zuzana
Author: Marini, Mauro
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 1
Year: 2007
Pages: 75-86
Summary lang: English
.
Category: math
.
Summary: Some asymptotic properties of principal solutions of the half-linear differential equation \[ (a(t)\Phi (x^{\prime }))^{\prime }+b(t)\Phi (x)=0\,, \qquad \mathrm {(*)}\] $\Phi (u)=|u|^{p-2}u$, $p>1$, is the $p$-Laplacian operator, are considered. It is shown that principal solutions of (*) are, roughly speaking, the smallest solutions in a neighborhood of infinity, like in the linear case. Some integral characterizations of principal solutions of (), which completes previous results, are presented as well. (English)
Keyword: half-linear equation
Keyword: principal solution
Keyword: limit characterization
Keyword: integral characterization
MSC: 34C10
MSC: 34C11
idZBL: Zbl 1164.34011
idMR: MR2310127
.
Date available: 2008-06-06T22:50:37Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108052
.
Reference: [1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations.Kluwer Acad. Publ., Dordrecht, The Netherlands, 2002. Zbl 1073.34002, MR 2091751
Reference: [2] Cecchi M., Došlá Z., Marini M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 1 (2001), 419–436. Zbl 0996.34039, MR 1842385
Reference: [3] Cecchi M., Došlá Z., Marini M.: Half-linear equations and characteristic properties of the principal solution.J. Differential Equ. 208, 2005, 494-507; Corrigendum, J. Differential Equations 221 (2006), 272–274. MR 2109564
Reference: [4] Cecchi M., Došlá Z., Marini M.: Half-linear differential equations with oscillating coefficient.Differential Integral Equations 18 11 (2005), 1243–1256. Zbl 1212.34144, MR 2174819
Reference: [5] Cecchi M., Došlá Z., Marini M., Vrkoč I.: Integral conditions for nonoscillation of second order nonlinear differential equations.Nonlinear Anal. 64 (2006), 1278–1289. Zbl 1114.34031, MR 2200492
Reference: [6] Došlá Z., Vrkoč I.: On extension of the Fubini theorem and its application to the second order differential equations.Nonlinear Anal. 57 (2004), 531–548. MR 2062993
Reference: [7] Došlý O., Elbert Á.: Integral characterization of the principal solution of half-linear second order differential equations.Studia Sci. Math. Hungar. 36 (2000), 455–469. MR 1798750
Reference: [8] Došlý O., Řehák P.: Half-linear Differential Equations.North-Holland, Mathematics Studies 202, Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903
Reference: [9] Došlý O., Řezníčková J.: Regular half-linear second order differential equations.Arch. Math. (Brno) 39 (2003), 233–245. Zbl 1119.34029, MR 2010724
Reference: [10] Elbert Á.: On the half-linear second order differential equations.Acta Math. Hungar. 49 (1987), 487–508. Zbl 0656.34008, MR 0891061
Reference: [11] Elbert Á., Kusano T.: Principal solutions of non-oscillatory half-linear differential equations.Adv. Math. Sci. Appl. 8 2 (1998), 745–759. Zbl 0914.34031, MR 1657164
Reference: [12] Fan X., Li W. T., Zhong C.: A classification scheme for positive solutions of second order iterative differential equations.Electron. J. Differential Equations 25 (2000), 1–14.
Reference: [13] Hartman P.: Ordinary Differential Equations.2nd ed., Birkhäuser, Boston–Basel–Stuttgart, 1982. Zbl 0476.34002, MR 0658490
Reference: [14] Hoshino H., Imabayashi R., Kusano T., Tanigawa T.: On second-order half-linear oscillations.Adv. Math. Sci. Appl. 8 1 (1998), 199–216. Zbl 0898.34036, MR 1623342
Reference: [15] Jaroš J., Kusano T., Tanigawa T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855
Reference: [16] Jingfa W.: On second order quasilinear oscillations.Funkcial. Ekvac. 41 (1998), 25–54. Zbl 1140.34356, MR 1627369
Reference: [17] Mirzov J. D.: Asymptotic Properties of Solutions of the Systems of Nonlinear Nonautonomous Ordinary Differential Equations.(Russian), Maikop, Adygeja Publ., 1993; the english version: Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 2004. MR 2144761
.

Files

Files Size Format View
ArchMathRetro_043-2007-1_8.pdf 232.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo