Title:
|
Limit and integral properties of principal solutions for half-linear differential equations (English) |
Author:
|
Cecchi, Mariella |
Author:
|
Došlá, Zuzana |
Author:
|
Marini, Mauro |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
75-86 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Some asymptotic properties of principal solutions of the half-linear differential equation \[ (a(t)\Phi (x^{\prime }))^{\prime }+b(t)\Phi (x)=0\,, \qquad \mathrm {(*)}\] $\Phi (u)=|u|^{p-2}u$, $p>1$, is the $p$-Laplacian operator, are considered. It is shown that principal solutions of (*) are, roughly speaking, the smallest solutions in a neighborhood of infinity, like in the linear case. Some integral characterizations of principal solutions of (), which completes previous results, are presented as well. (English) |
Keyword:
|
half-linear equation |
Keyword:
|
principal solution |
Keyword:
|
limit characterization |
Keyword:
|
integral characterization |
MSC:
|
34C10 |
MSC:
|
34C11 |
idZBL:
|
Zbl 1164.34011 |
idMR:
|
MR2310127 |
. |
Date available:
|
2008-06-06T22:50:37Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108052 |
. |
Reference:
|
[1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations.Kluwer Acad. Publ., Dordrecht, The Netherlands, 2002. Zbl 1073.34002, MR 2091751 |
Reference:
|
[2] Cecchi M., Došlá Z., Marini M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 1 (2001), 419–436. Zbl 0996.34039, MR 1842385 |
Reference:
|
[3] Cecchi M., Došlá Z., Marini M.: Half-linear equations and characteristic properties of the principal solution.J. Differential Equ. 208, 2005, 494-507; Corrigendum, J. Differential Equations 221 (2006), 272–274. MR 2109564 |
Reference:
|
[4] Cecchi M., Došlá Z., Marini M.: Half-linear differential equations with oscillating coefficient.Differential Integral Equations 18 11 (2005), 1243–1256. Zbl 1212.34144, MR 2174819 |
Reference:
|
[5] Cecchi M., Došlá Z., Marini M., Vrkoč I.: Integral conditions for nonoscillation of second order nonlinear differential equations.Nonlinear Anal. 64 (2006), 1278–1289. Zbl 1114.34031, MR 2200492 |
Reference:
|
[6] Došlá Z., Vrkoč I.: On extension of the Fubini theorem and its application to the second order differential equations.Nonlinear Anal. 57 (2004), 531–548. MR 2062993 |
Reference:
|
[7] Došlý O., Elbert Á.: Integral characterization of the principal solution of half-linear second order differential equations.Studia Sci. Math. Hungar. 36 (2000), 455–469. MR 1798750 |
Reference:
|
[8] Došlý O., Řehák P.: Half-linear Differential Equations.North-Holland, Mathematics Studies 202, Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903 |
Reference:
|
[9] Došlý O., Řezníčková J.: Regular half-linear second order differential equations.Arch. Math. (Brno) 39 (2003), 233–245. Zbl 1119.34029, MR 2010724 |
Reference:
|
[10] Elbert Á.: On the half-linear second order differential equations.Acta Math. Hungar. 49 (1987), 487–508. Zbl 0656.34008, MR 0891061 |
Reference:
|
[11] Elbert Á., Kusano T.: Principal solutions of non-oscillatory half-linear differential equations.Adv. Math. Sci. Appl. 8 2 (1998), 745–759. Zbl 0914.34031, MR 1657164 |
Reference:
|
[12] Fan X., Li W. T., Zhong C.: A classification scheme for positive solutions of second order iterative differential equations.Electron. J. Differential Equations 25 (2000), 1–14. |
Reference:
|
[13] Hartman P.: Ordinary Differential Equations.2nd ed., Birkhäuser, Boston–Basel–Stuttgart, 1982. Zbl 0476.34002, MR 0658490 |
Reference:
|
[14] Hoshino H., Imabayashi R., Kusano T., Tanigawa T.: On second-order half-linear oscillations.Adv. Math. Sci. Appl. 8 1 (1998), 199–216. Zbl 0898.34036, MR 1623342 |
Reference:
|
[15] Jaroš J., Kusano T., Tanigawa T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855 |
Reference:
|
[16] Jingfa W.: On second order quasilinear oscillations.Funkcial. Ekvac. 41 (1998), 25–54. Zbl 1140.34356, MR 1627369 |
Reference:
|
[17] Mirzov J. D.: Asymptotic Properties of Solutions of the Systems of Nonlinear Nonautonomous Ordinary Differential Equations.(Russian), Maikop, Adygeja Publ., 1993; the english version: Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 2004. MR 2144761 |
. |