Previous |  Up |  Next

Article

Title: Ideal amenability of module extensions of Banach algebras (English)
Author: Gordji, Eshaghi M.
Author: Habibian, F.
Author: Hayati, B.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 3
Year: 2007
Pages: 177-184
Summary lang: English
.
Category: math
.
Summary: Let $\cal A$ be a Banach algebra. $\cal A$ is called ideally amenable if for every closed ideal $I$ of $\cal A$, the first cohomology group of $\cal A$ with coefficients in $I^*$ is zero, i.e. $H^1({\cal A}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in {N}$, $\cal A$ is called $n$-ideally amenable if for every closed ideal $I$ of $\cal A$, $H^1({\cal A},I^{(n)})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable. (English)
Keyword: ideally amenable
Keyword: Banach algebra
Keyword: derivation
MSC: 46Hxx
idZBL: Zbl 1164.46020
idMR: MR2354806
.
Date available: 2008-06-06T22:51:05Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108063
.
Reference: [1] Bade W. G., Curtis P. G., Dales H. G.,: Amenability and weak amenability for Beurling and Lipschits algebra.Proc. London Math. Soc. (3) 55 (1987), 359–377. MR 0896225
Reference: [2] Dales H. G., Ghahramani F., Grønbæk N.: Derivations into iterated duals of Banach algebras.Studia Math. 128 (1998), 19–54. MR 1489459
Reference: [3] Despic M., Ghahramani F.: Weak amenability of group algebras of locally compact groups.Canad. Math. Bull. 37 (1994), 165–167. Zbl 0813.43001, MR 1275699
Reference: [4] Eshaghi Gordji M., Hosseiniun S. A. R.: Ideal amenability of Banach algebras on locally compact groups.Proc. Indian Acad. Sci. 115, 3 (2005), 319–325. Zbl 1098.46033, MR 2161735
Reference: [5] Eshaghi Gordji M., Hayati B., Hosseiniun S. A. R.: Derivations into duals of closed ideals of Banach algebras.submitted.
Reference: [6] Eshaghi Gordji M., Habibian F., Rejali A.: Ideal amenability of module extension Banach algebras.Int. J. Contemp. Math. Sci. 2, 5 (2007), 213–219. Zbl 1120.46308, MR 2296773
Reference: [7] Eshaghi Gordji M., Memarbashi R.: Derivations into n-th duals of ideals of Banach algebras.submitted. Zbl 1154.46026
Reference: [8] Eshaghi Gordji M., Yazdanpanah T.: Derivations into duals of ideals of Banach algebras.Proc. Indian Acad. Sci. 114, 4 (2004), 399–408. MR 2067702
Reference: [9] Grønbæk N.: A characterization of weakly amenable Banach algebras.Studia Math. 94 (1989), 150–162. MR 1025743
Reference: [10] Grønbæk N.: Weak and cyclic amenability for non-commutative Banach algebras.Proc. Edinburg Math. Soc. 35 (1992), 315–328. MR 1169250
Reference: [11] Haagerup U.: All nuclear ${\mathcal C}^*$-algebras are amenable.Invent. Math. 74 (1983), 305–319. MR 0723220
Reference: [12] Johnson B. E.: Cohomology in Banach algebras.Mem. Amer. Math. Soc. 127 (1972). Zbl 0256.18014, MR 0374934
Reference: [13] Johnson B. E.: Weak amenability of group algebras.Bull. London Math. Soc. 23 (1991), 281–284. Zbl 0757.43002, MR 1123339
Reference: [14] Johnson B. E., White M. C.: A non-weakly amenable augmentation ideal.submitted.
Reference: [15] Wassermann S.: On tensor products of certain group $C^*-$algebras.J. Funct. Anal. 23 (1976), 28–36. Zbl 0358.46040, MR 0425628
Reference: [16] Zhang, Yong: Weak amenability of module extensions of Banach algebras.Trans. Amer. Math. Soc. 354, (10) (2002), 4131–4151. Zbl 1008.46019, MR 1926868
.

Files

Files Size Format View
ArchMathRetro_043-2007-3_4.pdf 210.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo