Previous |  Up |  Next

Article

Title: On unique range sets of meromorphic functions in $\mathbb{C}^m$ (English)
Author: Bai, Xiao-Tian
Author: Han, Qi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 3
Year: 2007
Pages: 185-195
Summary lang: English
.
Category: math
.
Summary: By considering a question proposed by F. Gross concerning unique range sets of entire functions in $\mathbb {C}$, we study the unicity of meromorphic functions in $\mathbb {C}^m$ that share three distinct finite sets CM and obtain some results which reduce $5\le c_3(\mathcal {M}(\mathbb {C}^m))\le 9$ to $5\le c_3(\mathcal {M}(\mathbb {C}^m))\le 6$. (English)
Keyword: entire (holomorphic) functions
Keyword: meromorphic functions
Keyword: unique range sets
Keyword: linearly (in)dependent
MSC: 32A22
idZBL: Zbl 1164.32001
idMR: MR2354807
.
Date available: 2008-06-06T22:51:17Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108064
.
Reference: [1] Bernstein C. A., Chang D. C., Li B. Q.: Shared values for meromorphic functions.Adv. Math. 115 (1995), 201–220. MR 1354669
Reference: [2] Fang M. L.: On the uniqueness of admissible meromorphic functions in the unit disc.Sci. China Ser. A 28 (1998), 1056–1074. MR 1703235
Reference: [3] Fujimoto H.: The uniqueness problem of meromorphic maps into the complex projective space.Nagoya Math. J. 58 (1975), 1–23. Zbl 0313.32005, MR 0393586
Reference: [4] Gackstatter F., Laine I.: Zur Theorie der gew$\ddot{o}$hnlichen Differentialgleichungen im Komplexen.Ann. Polon. Math. 38 (1980), 259–287. MR 0599252
Reference: [5] Gross F.: On the distribution of values of meromorphic functionas.Trans. Amer. Math. Soc. 131 (1968), 199–214. MR 0220938
Reference: [6] Gross F.: Factorization of meromorphic functions and some open problems.Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Kentucky, 1976), Lecture Notes in Math. 599, Springer, Berlin, 1977. MR 0450529
Reference: [7] Hayman W. K.: Meromorphic Functions.Clarendon Press, Oxford, 1964. Zbl 0115.06203, MR 0164038
Reference: [8] Hu P. C., Li C., Yang C. C.: Unicity of Meromorphic Mappings.Kluwer Academic, Dordrecht, 2003. Zbl 1074.30002, MR 1988768
Reference: [9] Jin L., Ru M.: A unicity theorem for moving targets counting multiplicities.Tôhoku Math. J. 57 (2005), 589–595. Zbl 1106.32017, MR 2203548
Reference: [10] Vitter A.: The lemma of the logarithmic derivative in several complex variables.Duke Math. J. 44 (1977), 89–104. Zbl 0361.32003, MR 0432924
Reference: [11] Yang C. C., Yi H. X.: Uniqueness Theory of Meromorphic Functions.Science Press & Kluwer Academic, Beijing & Dordrecht, 2003. Zbl 1070.30011, MR 2105668
Reference: [12] Yi H. X.: On a question of Gross concerning uniqueness of entire functions.Bull. Austral. Math. Soc. 57 (1998), 343–349. Zbl 0905.30026, MR 1617332
.

Files

Files Size Format View
ArchMathRetro_043-2007-3_5.pdf 254.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo