[1] N. N. Bogoljubov, Ju. A. Mitropoľskij: Asymptotic methods in the theory of nonlinear oscillations. (Russian) Moscow 1955.
[2] E. A. Coddington N. Levinson:
Theory of ordinary differential equations. McGraw-Hill, New York 1955.
MR 0069338
[3] S. Diliberto G. Hufford:
Perturbation theorems for nonlinear differential equations. Ann. Math. Stud. 30 (1956), 207-236.
MR 0083071
[5] J. K. Hale:
Integral manifolds for perturbed differential systems. Ann. Math. 73 (1961), 496-531.
MR 0123786
[7] D. Henry:
Geometric theory of semilinear parabolic equations. Lect. Not. Math. 840, Springer, Berlin 1981.
MR 0610244 |
Zbl 0456.35001
[9] T. Kato:
Perturbation theory for linear operators. Springer, Berlin 1966.
Zbl 0148.12601
[10] A. Kelley:
The stable, center-stable, center, center-unstable, unstable manifolds. J. Diff. Eqs. 3(1967), 546-570.
MR 0221044 |
Zbl 0173.11001
[11] H. W. Knobloch F. Kappel:
Gewohnliche Differentialgleichungen. Teubner, Stuttgart 1974.
MR 0591708
[12] H. W. Knobloch:
Hopf bifurcation via integral manifolds. Abh. AdW DDR 1977, 3N, 413-419.
MR 0508537 |
Zbl 0363.34031
[13] H. W. Knobloch B. Aulbach:
The role of center manifolds in ordinary differential equations. Teubner-Texte zur Mathematik 47, 179-189. Leipzig 1982.
MR 0715971
[14] N. M. Krylov N. N. Bogoljubov: Application of methods from nonlinear mechanics to the theory of stationary oscillations. (Russian) Kiev 1934.
[15] J. Kurzweil:
Exponentially stable integral manifolds, averaging principle and continuous dependence on a parameter. Czech. Mat. J. 16 (1966), 380-423, 463 - 491.
MR 0206440 |
Zbl 0186.47701
[16] J. Kurzweil:
Invariant sets of differential systems. (Russian) Diff. Uravn. IV (1968), 785-797.
MR 0232044
[18] O. E. Landford: Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens. Lect. Not. Math. 322 (1973), 159-192.
[19] J. E. Marsden M. McCracken:
The Hopf bifurcation and its applictions. Springer, New York 1976.
MR 0494309
[20] Ju. A. Mitropoľskij O. B. Lykova:
Integral manifolds in the nonlinear mechanics. (Russian) Nauka, Moscow 1973.
MR 0364771
[21] V. A. Pliss: Integral manifolds of systems of periodic differential equations. (Russian) Nauka, Moscow 1977.
[22] L. E. Reizinš:
Systems of differential equations in local coordinates in the neighbourhood of a closed trajectory. (Russian) Izv. AN Latv. SSR, ser. fiz. techn. nauk 1, (1964), 59-66.
MR 0168851
[23] L. E. Reizinš: Local equivalence of differential equations. (Russian) Zinatne, Riga 1971.
[24] K. R. Schneider:
Hopf bifurcation and center manifolds. Coll. Math. Soc J. Bolyai 30 (1979), 953-970.
MR 0680628
[25] K. R. Schneider:
On the application of integral manifolds to Hopf bifurcation. Math. Nachr. 97 (1980), 313-323.
MR 0600844 |
Zbl 0478.34038
[26] K. R. Schneider:
On the existence of perturbed center submanifolds of a class of autonomous differential systems. Preprint P-26/80 ZIMM der AdW der DDR.
Zbl 0447.58026
[27] A. H. Wallace:
Differential Topology. Benjamin. New York 1968.
Zbl 0164.23805