Previous |  Up |  Next

Article

References:
[1] N. N. Bogoljubov, Ju. A. Mitropoľskij: Asymptotic methods in the theory of nonlinear oscillations. (Russian) Moscow 1955.
[2] E. A. Coddington N. Levinson: Theory of ordinary differential equations. McGraw-Hill, New York 1955. MR 0069338
[3] S. Diliberto G. Hufford: Perturbation theorems for nonlinear differential equations. Ann. Math. Stud. 30 (1956), 207-236. MR 0083071
[4] J. K. Hale: Ordinary differential equations. John Wiley & Sons, New York. MR 0419901 | Zbl 0433.34003
[5] J. K. Hale: Integral manifolds for perturbed differential systems. Ann. Math. 73 (1961), 496-531. MR 0123786
[6] Ph. Hartman: Ordinary differential equations. Birkhauser, Boston 1982. MR 0658490 | Zbl 0476.34002
[7] D. Henry: Geometric theory of semilinear parabolic equations. Lect. Not. Math. 840, Springer, Berlin 1981. MR 0610244 | Zbl 0456.35001
[8] G. Iooss: Bifurcation of maps and applications. North-Holland, Amsterdam 1979. MR 0531030 | Zbl 0408.58019
[9] T. Kato: Perturbation theory for linear operators. Springer, Berlin 1966. Zbl 0148.12601
[10] A. Kelley: The stable, center-stable, center, center-unstable, unstable manifolds. J. Diff. Eqs. 3(1967), 546-570. MR 0221044 | Zbl 0173.11001
[11] H. W. Knobloch F. Kappel: Gewohnliche Differentialgleichungen. Teubner, Stuttgart 1974. MR 0591708
[12] H. W. Knobloch: Hopf bifurcation via integral manifolds. Abh. AdW DDR 1977, 3N, 413-419. MR 0508537 | Zbl 0363.34031
[13] H. W. Knobloch B. Aulbach: The role of center manifolds in ordinary differential equations. Teubner-Texte zur Mathematik 47, 179-189. Leipzig 1982. MR 0715971
[14] N. M. Krylov N. N. Bogoljubov: Application of methods from nonlinear mechanics to the theory of stationary oscillations. (Russian) Kiev 1934.
[15] J. Kurzweil: Exponentially stable integral manifolds, averaging principle and continuous dependence on a parameter. Czech. Mat. J. 16 (1966), 380-423, 463 - 491. MR 0206440 | Zbl 0186.47701
[16] J. Kurzweil: Invariant sets of differential systems. (Russian) Diff. Uravn. IV (1968), 785-797. MR 0232044
[17] J. Kurzweil: Invariant manifolds. Comm. Math. Univ. Carol. 11 (1970), 309-336. MR 0296963 | Zbl 0197.47702
[18] O. E. Landford: Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens. Lect. Not. Math. 322 (1973), 159-192.
[19] J. E. Marsden M. McCracken: The Hopf bifurcation and its applictions. Springer, New York 1976. MR 0494309
[20] Ju. A. Mitropoľskij O. B. Lykova: Integral manifolds in the nonlinear mechanics. (Russian) Nauka, Moscow 1973. MR 0364771
[21] V. A. Pliss: Integral manifolds of systems of periodic differential equations. (Russian) Nauka, Moscow 1977.
[22] L. E. Reizinš: Systems of differential equations in local coordinates in the neighbourhood of a closed trajectory. (Russian) Izv. AN Latv. SSR, ser. fiz. techn. nauk 1, (1964), 59-66. MR 0168851
[23] L. E. Reizinš: Local equivalence of differential equations. (Russian) Zinatne, Riga 1971.
[24] K. R. Schneider: Hopf bifurcation and center manifolds. Coll. Math. Soc J. Bolyai 30 (1979), 953-970. MR 0680628
[25] K. R. Schneider: On the application of integral manifolds to Hopf bifurcation. Math. Nachr. 97 (1980), 313-323. MR 0600844 | Zbl 0478.34038
[26] K. R. Schneider: On the existence of perturbed center submanifolds of a class of autonomous differential systems. Preprint P-26/80 ZIMM der AdW der DDR. Zbl 0447.58026
[27] A. H. Wallace: Differential Topology. Benjamin. New York 1968. Zbl 0164.23805
Partner of
EuDML logo