Previous |  Up |  Next

Article

Title: Existence, persistence and structure of integral manifolds in the neighbourhood of a periodic solution of autonomous differential systems (English)
Author: Meiske, Wolfgang
Author: Schneider, Klaus R.
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 111
Issue: 3
Year: 1986
Pages: 304-313
.
Category: math
.
MSC: 34C45
idZBL: Zbl 0611.34045
idMR: MR853794
DOI: 10.21136/CPM.1986.108154
.
Date available: 2009-09-23T09:38:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108154
.
Reference: [1] N. N. Bogoljubov, Ju. A. Mitropoľskij: Asymptotic methods in the theory of nonlinear oscillations.(Russian) Moscow 1955.
Reference: [2] E. A. Coddington N. Levinson: Theory of ordinary differential equations.McGraw-Hill, New York 1955. MR 0069338
Reference: [3] S. Diliberto G. Hufford: Perturbation theorems for nonlinear differential equations.Ann. Math. Stud. 30 (1956), 207-236. MR 0083071
Reference: [4] J. K. Hale: Ordinary differential equations.John Wiley & Sons, New York. Zbl 0433.34003, MR 0419901
Reference: [5] J. K. Hale: Integral manifolds for perturbed differential systems.Ann. Math. 73 (1961), 496-531. MR 0123786
Reference: [6] Ph. Hartman: Ordinary differential equations.Birkhauser, Boston 1982. Zbl 0476.34002, MR 0658490
Reference: [7] D. Henry: Geometric theory of semilinear parabolic equations.Lect. Not. Math. 840, Springer, Berlin 1981. Zbl 0456.35001, MR 0610244
Reference: [8] G. Iooss: Bifurcation of maps and applications.North-Holland, Amsterdam 1979. Zbl 0408.58019, MR 0531030
Reference: [9] T. Kato: Perturbation theory for linear operators.Springer, Berlin 1966. Zbl 0148.12601
Reference: [10] A. Kelley: The stable, center-stable, center, center-unstable, unstable manifolds.J. Diff. Eqs. 3(1967), 546-570. Zbl 0173.11001, MR 0221044
Reference: [11] H. W. Knobloch F. Kappel: Gewohnliche Differentialgleichungen.Teubner, Stuttgart 1974. MR 0591708
Reference: [12] H. W. Knobloch: Hopf bifurcation via integral manifolds.Abh. AdW DDR 1977, 3N, 413-419. Zbl 0363.34031, MR 0508537
Reference: [13] H. W. Knobloch B. Aulbach: The role of center manifolds in ordinary differential equations.Teubner-Texte zur Mathematik 47, 179-189. Leipzig 1982. MR 0715971
Reference: [14] N. M. Krylov N. N. Bogoljubov: Application of methods from nonlinear mechanics to the theory of stationary oscillations.(Russian) Kiev 1934.
Reference: [15] J. Kurzweil: Exponentially stable integral manifolds, averaging principle and continuous dependence on a parameter.Czech. Mat. J. 16 (1966), 380-423, 463 - 491. Zbl 0186.47701, MR 0206440
Reference: [16] J. Kurzweil: Invariant sets of differential systems.(Russian) Diff. Uravn. IV (1968), 785-797. MR 0232044
Reference: [17] J. Kurzweil: Invariant manifolds.Comm. Math. Univ. Carol. 11 (1970), 309-336. Zbl 0197.47702, MR 0296963
Reference: [18] O. E. Landford: Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens.Lect. Not. Math. 322 (1973), 159-192.
Reference: [19] J. E. Marsden M. McCracken: The Hopf bifurcation and its applictions.Springer, New York 1976. MR 0494309
Reference: [20] Ju. A. Mitropoľskij O. B. Lykova: Integral manifolds in the nonlinear mechanics.(Russian) Nauka, Moscow 1973. MR 0364771
Reference: [21] V. A. Pliss: Integral manifolds of systems of periodic differential equations.(Russian) Nauka, Moscow 1977.
Reference: [22] L. E. Reizinš: Systems of differential equations in local coordinates in the neighbourhood of a closed trajectory.(Russian) Izv. AN Latv. SSR, ser. fiz. techn. nauk 1, (1964), 59-66. MR 0168851
Reference: [23] L. E. Reizinš: Local equivalence of differential equations.(Russian) Zinatne, Riga 1971.
Reference: [24] K. R. Schneider: Hopf bifurcation and center manifolds.Coll. Math. Soc J. Bolyai 30 (1979), 953-970. MR 0680628
Reference: [25] K. R. Schneider: On the application of integral manifolds to Hopf bifurcation.Math. Nachr. 97 (1980), 313-323. Zbl 0478.34038, MR 0600844
Reference: [26] K. R. Schneider: On the existence of perturbed center submanifolds of a class of autonomous differential systems.Preprint P-26/80 ZIMM der AdW der DDR. Zbl 0447.58026
Reference: [27] A. H. Wallace: Differential Topology.Benjamin. New York 1968. Zbl 0164.23805
.

Files

Files Size Format View
CasPestMat_111-1986-3_9.pdf 765.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo