Previous |  Up |  Next

Article

References:
[1] A. Benedek, R. Panzone: The spaces Lp with mixed norm. Duke Math. J. 28 (1961), 301-324. MR 0126155
[2] O. V. Besov V. P. Ilin, S. M. Nikolskii: Integral Representations of Functions and Embedding Theorems. Halsted Press, New York-Toronto-London, 1978. MR 0519341
[3] G. F. Duff: А general integral inequality for the derivative of an equimeasurable rearrangement. Can J. Math. 28 (1976), 793-804. MR 0409745 | Zbl 0342.26015
[4] John J. F. Fournier: Mixed norms and reaггangements: Ѕobolev's inequality and Littlewooďs inequality. To appear Аnn. Mat. Pura Аppl.
[5] E. Gagliardo: Propгietà di alcune classi di funzioni in più variabili. Richerche Mat. 7 (1958), 102-137. MR 0102740
[6] Miroslav Krbec: Ѕome imbedding theorems for anisotropic Ѕobolev spaces. Research Repoгt CMА-R53-83, Аustralian National University.
[7] S. N. Kruzhkov, I. M. Koldii: On the theory of imbedding of anisotropic Ѕobolev spaces. Uspeki Mat. Nauk 38 (1983), No. 2, 207-208. Engl. transl. Russian Math Ѕurveys 38 (1983), No. 2, 188-189. MR 0695478
[8] L. Nirenberg: On elliptic paгtial differential operators. Аnnali della Ѕcuola Noгmali Ѕup. Pisa 13(1959), 116-162. MR 0109940
[9] J. Rakosník: Ѕome remarks to anisotгopic Ѕobolev spaces I and II. Beiträge Аnal 13 (1979), 55-68 and 15 (1980), 127-140.
[10] S. L. Sobolev: On a theorem of functional analysis. Mat. Ѕbornik, 46 (1938), 471-496. Engl. tгansl. Аmeг. Math. Ѕoc. Transl. 34 (1963), 39-68.
[11] Giorgio Talenti: Best constant in Ѕobolev's inequality. Аnn, Mat. Puгa Аppl. 110 (1976), 353-372. MR 0463908
Partner of
EuDML logo