Previous |  Up |  Next

Article

Title: Anisotropic Sobolev inequalities (English)
Title: Anisotropní Sobolevovy nerovnosti (Czech)
Author: Adams, Robert A.
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 113
Issue: 3
Year: 1988
Pages: 267-279
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
MSC: 46E35
idZBL: Zbl 0663.46024
idMR: MR960763
DOI: 10.21136/CPM.1988.108786
.
Date available: 2009-09-23T09:47:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108786
.
Reference: [1] A. Benedek, R. Panzone: The spaces Lp with mixed norm.Duke Math. J. 28 (1961), 301-324. MR 0126155
Reference: [2] O. V. Besov V. P. Ilin, S. M. Nikolskii: Integral Representations of Functions and Embedding Theorems.Halsted Press, New York-Toronto-London, 1978. MR 0519341
Reference: [3] G. F. Duff: А general integral inequality for the derivative of an equimeasurable rearrangement.Can J. Math. 28 (1976), 793-804. Zbl 0342.26015, MR 0409745
Reference: [4] John J. F. Fournier: Mixed norms and reaггangements: Ѕobolev's inequality and Littlewooďs inequality.To appear Аnn. Mat. Pura Аppl.
Reference: [5] E. Gagliardo: Propгietà di alcune classi di funzioni in più variabili.Richerche Mat. 7 (1958), 102-137. MR 0102740
Reference: [6] Miroslav Krbec: Ѕome imbedding theorems for anisotropic Ѕobolev spaces.Research Repoгt CMА-R53-83, Аustralian National University.
Reference: [7] S. N. Kruzhkov, I. M. Koldii: On the theory of imbedding of anisotropic Ѕobolev spaces.Uspeki Mat. Nauk 38 (1983), No. 2, 207-208. Engl. transl. Russian Math Ѕurveys 38 (1983), No. 2, 188-189. MR 0695478
Reference: [8] L. Nirenberg: On elliptic paгtial differential operators.Аnnali della Ѕcuola Noгmali Ѕup. Pisa 13(1959), 116-162. MR 0109940
Reference: [9] J. Rakosník: Ѕome remarks to anisotгopic Ѕobolev spaces I and II.Beiträge Аnal 13 (1979), 55-68 and 15 (1980), 127-140.
Reference: [10] S. L. Sobolev: On a theorem of functional analysis.Mat. Ѕbornik, 46 (1938), 471-496. Engl. tгansl. Аmeг. Math. Ѕoc. Transl. 34 (1963), 39-68.
Reference: [11] Giorgio Talenti: Best constant in Ѕobolev's inequality.Аnn, Mat. Puгa Аppl. 110 (1976), 353-372. MR 0463908
.

Files

Files Size Format View
CasPestMat_113-1988-3_5.pdf 1.295Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo