Previous |  Up |  Next

Article

Title: Two-points boundary value problems for Carathéodory second order equations (English)
Author: Taddei, Valentina
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 2
Year: 2008
Pages: 93-103
Summary lang: English
.
Category: math
.
Summary: Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions. (English)
Keyword: continuation principle
Keyword: coincidence degree
Keyword: second order differential systems
Keyword: bound sets
Keyword: Floquet type boundary conditions
MSC: 34B15
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1212.34039
idMR: MR2432846
.
Date available: 2008-07-24T13:17:41Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/116926
.
Reference: [1] Andres, J., Malaguti, L., Taddei, V.: Bounded solutions of Carathéodory differential inclusions: a bound sets approach.Abstr. Appl. Anal. 9 (2003), 547–571. Zbl 1036.34011, MR 1981485, 10.1155/S108533750321006X
Reference: [2] Andres, J., Malaguti, L., Taddei, V.: A bounding function approach to multivalued boundary values problems.Set-valued Methods in Dynamic Systems, Special Issue of Dynam. Systems Appl. 16 (2007), 37–48. MR 2305427
Reference: [3] Erbe, L., Palamides, P. K.: Boundary value problems for second order differential systems.J. Math. Anal. Appl. 127 (1) (1987), 80–92. Zbl 0635.34017, MR 0904211, 10.1016/0022-247X(87)90141-7
Reference: [4] Erbe, L., Schmitt, K.: Boundary value problems for second order differential equations.Nonlinear Anal. Appl., Proc. 7th Int. Conf. (Arlington 1986), Lect. Notes Pure Appl. Math. 109 (1987), 179–184. Zbl 0636.34012, MR 0912292
Reference: [5] Gaines, R .E., Mawhin, J.: Coincidence degree and nonlinear differential equations.Lectures Notes in Math., Springer–Verlag, Berlin 586 (1977). Zbl 0339.47031, MR 0637067
Reference: [6] Hartman, P.: Ordinary Differential Equations.Wiley-Interscience, New York, 1969. MR 0419901
Reference: [7] Lloyd, N. G.: Degree Theory.Cambridge University Press, Cambridge, 1978. Zbl 0367.47001, MR 0493564
Reference: [8] Mawhin, J.: Boundary value problems for nonlinear second order vector differential equations.J. Differential Equations 16 (1974), 257–269. Zbl 0301.34019, MR 0361250, 10.1016/0022-0396(74)90013-8
Reference: [9] Mawhin, J.: The Bernstein-Nagumo problem and two-point boundary value problem for ordinary differential equations, Qualitative theory of differential equations.Colloq. Math. Soc. János Bolyai, Szeged 30 II (1979), 709–740. MR 0680616
Reference: [10] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Series, Amer. Math. Soc., Providence, RI 40 (1979). Zbl 0414.34025, MR 0525202
Reference: [11] Mawhin, J., Thompson, H. B.: Periodic or bounded solutions of Carathéodory systems of ordinary differential equations.J. Dynam. Differential Equations 15 (2-3) (2003), 327–334. Zbl 1055.34035, MR 2046722, 10.1023/B:JODY.0000009739.00640.44
Reference: [12] Mawhin, J., Ward Jr., J. R.: Guiding-like functions for periodic or bounded solutions of ordinary differential equations.Discrete Contin. Dynam. Systems 8 (1) (2002), 39–54. Zbl 1087.34518, MR 1877827
Reference: [13] Scorza Dragoni, G.: Intorno a un criterio di esistenza per un problema di valori ai limiti.Rend. Accad. Naz. Lincei 28 (6) (1938), 317–325.
Reference: [14] Taddei, V., Zanolin, F.: Bound sets and two-points boundary value problems for second order differential equations.Georg. Math. J., Special issue dedicated to 70th birthday of Prof. I. Kiguradze 14 (2) (2007). MR 2341286
Reference: [15] Thompson, H. B.: Existence of solutions for a two-point boundary value problem.Rend. Circ. Mat. Palermo (2) 35 (2) (1986), 261–275. Zbl 0608.34018, MR 0892085, 10.1007/BF02844736
.

Files

Files Size Format View
ArchMathRetro_044-2008-2_2.pdf 478.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo