Title:
|
Two-points boundary value problems for Carathéodory second order equations (English) |
Author:
|
Taddei, Valentina |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
44 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
93-103 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions. (English) |
Keyword:
|
continuation principle |
Keyword:
|
coincidence degree |
Keyword:
|
second order differential systems |
Keyword:
|
bound sets |
Keyword:
|
Floquet type boundary conditions |
MSC:
|
34B15 |
MSC:
|
47H10 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1212.34039 |
idMR:
|
MR2432846 |
. |
Date available:
|
2008-07-24T13:17:41Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116926 |
. |
Reference:
|
[1] Andres, J., Malaguti, L., Taddei, V.: Bounded solutions of Carathéodory differential inclusions: a bound sets approach.Abstr. Appl. Anal. 9 (2003), 547–571. Zbl 1036.34011, MR 1981485, 10.1155/S108533750321006X |
Reference:
|
[2] Andres, J., Malaguti, L., Taddei, V.: A bounding function approach to multivalued boundary values problems.Set-valued Methods in Dynamic Systems, Special Issue of Dynam. Systems Appl. 16 (2007), 37–48. MR 2305427 |
Reference:
|
[3] Erbe, L., Palamides, P. K.: Boundary value problems for second order differential systems.J. Math. Anal. Appl. 127 (1) (1987), 80–92. Zbl 0635.34017, MR 0904211, 10.1016/0022-247X(87)90141-7 |
Reference:
|
[4] Erbe, L., Schmitt, K.: Boundary value problems for second order differential equations.Nonlinear Anal. Appl., Proc. 7th Int. Conf. (Arlington 1986), Lect. Notes Pure Appl. Math. 109 (1987), 179–184. Zbl 0636.34012, MR 0912292 |
Reference:
|
[5] Gaines, R .E., Mawhin, J.: Coincidence degree and nonlinear differential equations.Lectures Notes in Math., Springer–Verlag, Berlin 586 (1977). Zbl 0339.47031, MR 0637067 |
Reference:
|
[6] Hartman, P.: Ordinary Differential Equations.Wiley-Interscience, New York, 1969. MR 0419901 |
Reference:
|
[7] Lloyd, N. G.: Degree Theory.Cambridge University Press, Cambridge, 1978. Zbl 0367.47001, MR 0493564 |
Reference:
|
[8] Mawhin, J.: Boundary value problems for nonlinear second order vector differential equations.J. Differential Equations 16 (1974), 257–269. Zbl 0301.34019, MR 0361250, 10.1016/0022-0396(74)90013-8 |
Reference:
|
[9] Mawhin, J.: The Bernstein-Nagumo problem and two-point boundary value problem for ordinary differential equations, Qualitative theory of differential equations.Colloq. Math. Soc. János Bolyai, Szeged 30 II (1979), 709–740. MR 0680616 |
Reference:
|
[10] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Series, Amer. Math. Soc., Providence, RI 40 (1979). Zbl 0414.34025, MR 0525202 |
Reference:
|
[11] Mawhin, J., Thompson, H. B.: Periodic or bounded solutions of Carathéodory systems of ordinary differential equations.J. Dynam. Differential Equations 15 (2-3) (2003), 327–334. Zbl 1055.34035, MR 2046722, 10.1023/B:JODY.0000009739.00640.44 |
Reference:
|
[12] Mawhin, J., Ward Jr., J. R.: Guiding-like functions for periodic or bounded solutions of ordinary differential equations.Discrete Contin. Dynam. Systems 8 (1) (2002), 39–54. Zbl 1087.34518, MR 1877827 |
Reference:
|
[13] Scorza Dragoni, G.: Intorno a un criterio di esistenza per un problema di valori ai limiti.Rend. Accad. Naz. Lincei 28 (6) (1938), 317–325. |
Reference:
|
[14] Taddei, V., Zanolin, F.: Bound sets and two-points boundary value problems for second order differential equations.Georg. Math. J., Special issue dedicated to 70th birthday of Prof. I. Kiguradze 14 (2) (2007). MR 2341286 |
Reference:
|
[15] Thompson, H. B.: Existence of solutions for a two-point boundary value problem.Rend. Circ. Mat. Palermo (2) 35 (2) (1986), 261–275. Zbl 0608.34018, MR 0892085, 10.1007/BF02844736 |
. |