Previous |  Up |  Next

Article

Title: Complete spacelike hypersurfaces with constant scalar curvature (English)
Author: Shu, Schi Chang
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 2
Year: 2008
Pages: 105-114
Summary lang: English
.
Category: math
.
Summary: In this paper, we characterize the $n$-dimensional $(n\ge 3)$ complete spacelike hypersurfaces $M^n$ in a de Sitter space $S^{n+1}_1$ with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that $M^n$ is a locus of moving $(n-1)$-dimensional submanifold $M^{n-1}_1(s)$, along $M^{n-1}_1(s)$ the principal curvature $\lambda $ of multiplicity $n-1$ is constant and $M^{n-1}_1(s)$ is umbilical in $S^{n+1}_1$ and is contained in an $(n-1)$-dimensional sphere $S^{n-1}\big (c(s)\big )=E^n(s)\cap S^{n+1}_1$ and is of constant curvature $\big (\frac{d\lbrace \log |\lambda ^2-(1-R)|^{1/n}\rbrace }{ds}\big )^2-\lambda ^2+1$,where $s$ is the arc length of an orthogonal trajectory of the family $M^{n-1}_1(s)$, $E^n(s)$ is an $n$-dimensional linear subspace in $R^{n+2}_1$ which is parallel to a fixed $E^n(s_0)$ and $u=\big |\lambda ^2-(1-R)\big |^{-\frac{1}{n}}$ satisfies the ordinary differental equation of order 2, $\frac{d^2u}{ds^2}-u\big (\pm \frac{n-2}{2}\frac{1}{u^n}+R-2\big )=0$. (English)
Keyword: de Sitter space
Keyword: spacelike hypersurface
Keyword: scalar curvature
Keyword: principal curvature
Keyword: umbilical
MSC: 53C20
MSC: 53C42
idZBL: Zbl 1212.53084
idMR: MR2432847
.
Date available: 2008-07-24T13:17:45Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/116927
.
Reference: [1] Brasil, A., Jr., , Colares, A. G., Palmas, O.: Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem.Illinois J. Math. 47 (3) (2003), 847–866. Zbl 1047.53031, MR 2007240
Reference: [2] Cheng, Q. M.: Complete hypersurfaces in a Euclidean space $R^{n+1}$ with constant scalar curvature.Indiana Univ. Math. J. 51 (2002), 53–68. MR 1896156, 10.1512/iumj.2002.51.2040
Reference: [3] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature.Amer. J. Math. 92 (1970), 145–173. Zbl 0196.25102, MR 0264565, 10.2307/2373502
Reference: [4] Shu, S. C.: Complete spacelike hypersurfaces in a de Sitter space.Bull. Austral. Math. Soc. 73 (2006), 9–16. Zbl 1098.53051, MR 2206558, 10.1017/S0004972700038570
Reference: [5] Zheng, Y.: On spacelike hypersurfaces in the de Sitter spaces.Ann. Global Anal. Geom. 13 (1995), 317–321. MR 1364006, 10.1007/BF00773403
Reference: [6] Zheng, Y.: Spacelike hypersurfaces with constant scalar curvature in the de Sitter spaces.Differential Geom. Appl. 6 (1996), 51–54. MR 1384878, 10.1016/0926-2245(96)00006-X
.

Files

Files Size Format View
ArchMathRetro_044-2008-2_3.pdf 465.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo